Answer:
See below
Explanation:
You have to heat the calorimeter to 100 C from 20 C
this will take .20 kg * 390 j /kg-C * 80 C = <u>6240 j</u>
You have to heat the mass of water to boiling point (100 C ) from 20C
this will take
.50 kg * 4182 j/kg-C * 80 = <u>167,280 j </u>
AND you have to add enough heat to boil off .03 kg of water:
.03 kg * (2260000 j/kg-C ) =<u> 67,800 j</u>
<u />
Power = joules / sec = (6240 + 167280 + 67800) / 274.8 =<u> 878 watts </u>
<u />
<u>Your answer may differ just a bit for slightly different or rounded values of specific heat or heat of fusion for water .....</u>
<span>Discrimination is illegal, but caste system is legal.
So answer: False</span>
Answer:
As much I know the gravity on moon is 1.62m/s२.
The annual production of carbon dioxide is 124121.49×10^{6}[/tex] kg.
First we calculate the fuel consumed by each car in a year
Fuel consumed=6990/21.4=326.63 gallon
Now we calculate the amount of fuel consumed by 40 million cars in a year
Fuel consumed=326.63*40*10^6=13065.42 million gallon,
Now we can calculate the annual production of carbon dioxide in the USA
CO2 production rate=9.50*13065.42=124121.49*10^6 kg
Therefore the annual production of carbon dioxide in USA is 124121.49×10^{6}[/tex] kg
Answer:
The uncertainty in the location that must be tolerated is 
Explanation:
From the uncertainty Principle,
Δ
Δ

The momentum P
= (mass of electron)(speed of electron)
= 
= 
If the uncertainty is reduced to a 0.0010%, then momentum
= 
Thus the uncertainty in the position would be:
Δ
Δ