Answer:
Explanation:
the light ray leaving a medium in contrast to the entering or incident ray.
Answer:
The specific heat for the metal is 0.466 J/g°C.
Explanation:
Given,
Q = 1120 Joules
mass = 12 grams
T₁ = 100°C
T₂ = 300°C
The specific heat for the metal can be calculated by using the formula
Q = (mass) (ΔT) (Cp)
ΔT = T₂ - T₁ = 300°C - 100°C = 200°C
Substituting values,
1120 = (12)(200)(Cp)
Cp = 0.466 J/g°C.
Therefore, specific heat of the metal is 0.466 J/g°C.
Answer:
<h2>The pin's final velocity is 5m/s</h2>
Explanation:
Step one:
given data
mass of ball m1=5kg
initial velocity of ball u1=10m/s
mass of pin m2=2kg
initial velocity of pin u2= 0m/s
final velocity of ball v2=8m/s
final velocity of pin v2=?
Step two:
The expression for elastic collision is given as
m1u1+m2u2=m1v1+m2v2
substituting we have
5*10+2*0=5*8+2*v2
50+0=40+2v2
50-40=2v2
10=2v2
divide both sides by 2
v2=10/2
v2=5m/s
The pin's final velocity is 5m/s
Force = (mass) x (acceleration)
5 N = (9 kg) x (acceleration)
Divide each side
by 9 kg : 5 N / 9 kg = acceleration
Acceleration = (5/9) kg-meter/sec²-kg
= 0.555... m/s² .
Answer:
The potential difference between the plates increases
Explanation:
As we know that the capacitance of the capacitor is given by:
(1)
where
q = charge
C = capacitance
V = Voltage or Potential Difference
Also, the capacitance of a parallel plate capacitor is given as:
(2)
where

A = Area of the plates
D = Separation distance between the plates
Now, from eqn (1) and (2):

Now, from the above eqn we can say that:
Potential difference depends directly on the separation distance between the plates of the capacitor and is inversely dependent on the area of the plates of the capacitor.
Therefore, after disconnecting, if the separation between the plates is increased the potential difference across it also increases.