Answer: Add an incline or grade to the road track.
Explanation:
Refer to the figure shown below.
When a vehicle travels on a level road in a circular path of radius r, a centrifugal force, F, tends to make the vehicle skid away from the center of the circular path.
The magnitude of the force is
F = mv²/r
where
m = mass of the vehicle
v = linear (tangential) velocity to the circular path.
The force that resists the skidding of the vehicle is provided by tractional frictional force at the tires, of magnitude
μN = μW = μmg
where
μ = dynamic coefficient of friction.
At high speeds, the frictional force will not overcome the centrifugal force, and the vehicle will skid.
When an incline of θ degrees is added to the road track, the frictional force is augmented by the component of the weight of the vehicle along the incline.
Therefore the force that opposes the centrifugal force becomes
μN + Wsinθ = W(sinθ + μ cosθ).
Answer:
<h2>
44 m/s</h2>
Explanation:
In this problem we are expected to calculate the velocity of Georges movements.
Given data
Total distance covered by George= 850+250= 1100 meters
Time taken by George to cover the total distance= 25 seconds
We know that velocity is, v= distance/ time
Therefore substituting our data into the expression for velocity we have
v= 1100/ 25= 44 m/s
Hence the velocity in m/s is 44
Impulse = change of momentum
Impulse = 45 x 6 = 270 Ns
Most stars take millions of years to die. When a star like the Sun has burned all of its hydrogen fuel, it expands to become a red giant then when it fully runs out it then dies
Force
Explanation:
so force is your answer see why b/c