Balancing means there are equal amount of molecules on each side, both reactant and products. This is a method I like to do.
Under, I count how many molecules are in each side.
Cr2O3+Mg -->Cr + MgO
Cr: 2 1
O: 3 1
Mg: 1 1
Let's guess and make the number of oxygens equal on both sides.
Cr2O3+Mg -->Cr + 3MgO
Cr: 2 1
O: 3 3 EQUAL
Mg: 1 3
See what we did there? We multiplied the MgO on the products side by 3 so we can have 3 oxygens. Now let's multiply the Mg on the reactants by three so Mg AND O can be equal.
Cr2O3+3Mg -->Cr + 3 MgO
Cr: 2 1
O: 3 3 EQUAL
Mg: 3 3 EQUAL
Finally, we just need to multiply the loner Cr in the products side by two to make it equal for all elements.
Cr2O3+3Mg -->2Cr + 3 MgO
Explanation:
The molar mass of the compounds are incorrect
Answer:
The two molecules of acetyl-CoA that are produced from a molecule of glucose goes through two turn in the citric acid cycle, one for each molecule of acetyl-CoA.
Explanation:
Glycolysis the process by which a molecule of glucose is broken down in a series of steps to yield two molecules of pyruvate. The overall equation for the reactions of glycolsis is given below:
Glucose + 2NAD+ ----> 2 Pyruvate + 2NADH + 2H⁺
Each of the two pyruvate molecules produced from glucose breakdown is further oxidized to two molecules of acetyl-CoA and CO₂ each.
2 Pyruvate ----> 2 AcetylCoA + 2CO₂
Each of the acetyl-CoA molecule then enters the citric acid cycle for its oxidation. In each turn of the cycle, one acetyl group enters as acetyl-CoA and two molecules of CO₂ leave.