Answer:
-30.7 kj/mol
Explanation:
The standard free energy for the given reaction that is the hydrolysis of ATP is calculated using the formula: ∆Go ’= -RTln K’eq
where,
R = -8.315 J / mo
T = 298 K
For reaction,
1. K′eq1=270,
∆Go ’= -RTln K’eq
= - 8.315 x 298 x ln 270
= - 8.315 x 298 x 5.59
= - 13,851.293 J / mo
= - 13.85 kj/mol
2. K′eq2=890
∆Go ’= -RTln K’eq
= - 8.315 x 298 x ln 890
= - 8.315 x 298 x 6.79
= - 16.82 kj/mol
therefore, total standard free energy
= - 13.85 + (-16.82)
= -30.7 kj/mol
Thus, -30.7 kj/mol is the correct answer.
Answer:
Following are the solution to this question:
Explanation:
Please find the complete question in the attachment.
Start of Laboratory
Dissolve 2-naphthol in the round bottom flask with ethanol.
Add pellets of sodium hydroxide and hot chips. Attach a condenser.
Heat for 20 minutes under reflux, until the put a burden dissolves.
After an additional hour, add 1-Bromobutane and reflux.
Pour the contents into a beaker with ice from a round bottom flask.
On a Bachner funnel, absorb the supernatant by vacuum filtration.
Utilizing cold water to rinse the material and dry that on the filter.
Ending of the Lab
The answer is B Covalent bonds