<h2>Answer:</h2><h3>The temperature of the gas: V</h3>
The temperature of gas is a variable quantity. It can be changed by changing energy or pressure of gas.
<h3>The amount of gas in the tube (in terms of mass and moles): C</h3>
It is a constant entity. As mass of gas once taken can not be changed by changing temperature, pressure etc.
<h3>The radius of the tube: C</h3>
The radius of tube cannot change at any rate.
<h3>The temperature of the gas (changed by the water surrounding it): V</h3>
It can be changed by changing the temperature of water surrounding it.
<h3>The type of gas: C</h3>
It can never be changed.
<h3>The pressure of the gas: V</h3>
It can be changed by simply changing temperature and volume of gas.
Answer:

Explanation:
Hello,
Based on the information and the units of the given data, the integrated rate law turns out into:

Best regards.
Answer:
n₂ =1.4 mol
Explanation:
Given data:
Mass of nitrogen = 2 g
Initial Volume occupy by nitrogen = 1.25 L
Final volume occupy by nitrogen = 25.0 L
Final number of moles = ?
Solution;
Formula:
V₁ / n₁ = V₂ / n₂
Number of moles of nitrogen:
Number of moles = mass/ molar mass
Number of moles = 2 g/ 28 g/mol
Number of moles = 0.07 mol
Now we will put the values in formula:
V₁ / n₁ = V₂ / n₂
n₂ = V₂× n₁ /V₁
n₂ = 25 L × 0.07 mol / 1.25 L
n₂ = 1.75 L. mol / 1.25 L
n₂ =1.4 mol
No because 2 pounds only equals 16 ounces times 2 so it equals 32 ounces which is not bigger than 80
The ionization energy increases because the ratio of the protons to electrons increases. It is quantitatively expressed in symbols as X + energy → X+ + e−.