<h3><u>Answer;</u></h3>
2, Blank, 2 ;
<h3><u>Explanation;</u></h3>
The balanced chemical equation would be;
2 CO + O2 → 2 CO2
Balancing a chemical equation ensures that the number of atoms of each element are equal on both the reactants side and the products side. This ensures that the law of conservation of mass is obeyed in chemical reactions.
Answer:
Fluorine has seven electrons in 2p-subshell whereas chlorine has seven electrons in its 3p-subshell. 3p-subshell is relatively larger than 2p-subshell. Therefore, repulsion among the electrons will be more in the 2p-shell of fluorine than 3p-subshell in chlorine. Due to the smaller size and thus, the greater electron-electron repulsions, fluorine will not accept an incoming electron with the same as chlorine.
Answer:
A sample of a gas (5.0 mol) at 1.0 atm is expanded at constant temperature from 10 L to 15 L. The final pressure is 0.67 atm.
Step by Step Explanation?
Boyle's law states that in constant temperature the variation volume of gas is inversely proportional to the applied pressure.
The formula is,
P₁ x V₁ = P₂ × V₂
Where,
P₁ is initial pressure = 1 atm
P2 is final pressure = ? (Not Known)
V₁ is initial volume = 10 L
V₂ is final volume = 15 L
Now put the values in the formula,
\begin{gathered}\rm 1\times 10 = P_2\times 15\\\\\rm P_2 = \frac{10}{15\\} \\\\\rm P_2 = 0.67\end{gathered]
Therefore, the answer is 0.67 atm.
Answer:
Water is the solvent
Both the ethanol and the hydrogen peroxide are the solute
Explanation:
Both the hydrogen peroxide and ethanol are sisobable in water.
There are 0.05 moles of ethanol.
1 litreof water contains 55.55 moles of water.
0.2 g of hydrogen peroxide contains 0.2/34 = 0.0059 moles of hydrogen peroxide (the 34 is the molar mass of hydrogen peroxide).
Since there are more moles of water, water becomes the solvent and the other two liquids dissolve in it.
Answer:
Planck made many contributions to theoretical physics, but his fame rests primarily on his role as originator of the quantum theory. This theory revolutionized our understanding of atomic and subatomic processes, just as Albert Einstein's theory of relativity revolutionized our understanding of space and time