Your answer would be A for your homework
Explanation:
Because molarity is mol/L, we'll have to convert 17g to mol.
After obtaining the mol, we'll divide that by the volume to obtain Molarity.
Answer:
V₂ = 12.43 L
Explanation:
Given data:
Initial pressure = 650 KPa
Initial volume = 2.2 L
Final pressure = 115 KPa
Final volume = ?
Solution:
The given problem will be solved through the Boyles law,
"The volume of given amount of gas is inversely proportional to its pressure by keeping the temperature and number of moles constant"
Mathematical expression:
P₁V₁ = P₂V₂
P₁ = Initial pressure
V₁ = initial volume
P₂ = final pressure
V₂ = final volume
Now we will put the values in formula,
P₁V₁ = P₂V₂
650 KPa ×2.2 L = 115 KPa × V₂
V₂ = 1430 KPa. L/ 115 KPa
V₂ = 12.43 L
Answer:
A, C and D are correct.
Explanation:
Hello.
In this case, since the relationship between the vapor pressure of a solution is directly proportional to the mole fraction of the solvent and the vapor pressure of the pure solvent as stated by the Raoult's law:

Since the solute is not volatile, the mole fraction of the solute is not taken into account for vapor pressure of the solution, therefore A is correct whereas B is incorrect.
Moreover, since the higher the vapor pressure, the weaker the intermolecular forces due to the fact that less more molecules are like to change from liquid to vapor and therefore more energy is required for such change, we can evidence that both C and D are correct.
Best regards.
Astronauts experience weightlessness which is the apparent loss of weight of an object that is falling in gravitational field