A material will change from one state or phase to another at specific combinations of temperature and surrounding pressure. Typically, the pressure is atmospheric pressure, so temperature is the determining factor to the change in state in those cases.
Names such as boiling and freezing are given to the various changes in states of matter. The temperature of a material will increase until it reaches the point where the change takes place. It will stay at that temperature until that change is completed.
<u>Answer:</u> The spacing between the crystal planes is 
<u>Explanation:</u>
To calculate the spacing between the crystal planes, we use the equation given by Bragg, which is:

where,
n = order of diffraction = 2
= wavelength of the light =
(Conversion factor:
)
d = spacing between the crystal planes = ?
= angle of diffraction = 22.20°
Putting values in above equation, we get:

Hence, the spacing between the crystal planes is 
Iodine 131 and iodine 126 are the same in the sense that, they both have the same number of electrons and protons in their atoms, it is only the number of their neutrons that is different. Iodine 131 has 78 neutrons while iodine 126 has 73 neutrons.
Answer:
Case 1 (energy level): In an atom, an electron jumps from energy level 1 to energy level 3. ... The energy will increase.
Explanation: