The answer is C.
The vast difference in electronegativity of the oxygen and hydrogen in water, the O-H bond is polar.
Answer:
11.9 g of nitrogen monoxide
Explanation:
We'll begin by calculating the number of mole in 6.75 g of NH₃. This can be obtained as follow:
Mass of NH₃ = 6.75 g
Molar mass of NH₃ = 14 + (3×1)
= 14 + 3
= 17 g/mol
Mole of NH₃ =?
Mole = mass /molar mass
Mole of NH₃ = 6.75 / 17
Mole of NH₃ = 0.397 mole
Next, we shall determine the number of mole of NO produced by the reaction of 0.397 mole of NH₃. This can be obtained as follow:
4NH₃ + 5O₂ —> 4NO + 6H₂O
From the balanced equation above,
4 moles of NH₃ reacted to produce 4 moles of NO.
Therefore, 0.397 mole of NH₃ will also react to produce 0.397 mole of NO.
Finally, we shall determine the mass of 0.397 mole of NO. This can be obtained as follow:
Mole of NO = 0.397 mole
Molar mass of NO = 14 + 16 = 30 g/mol
Mass of NO =?
Mass = mole × molar mass
Mass of NO = 0.397 × 30
Mass of NO = 11.9 g
Thus, the mass of NO produced is 11.9 g
I think this the the list of choices relating to the above question.
reaction rate
<span>activation energy </span>
<span>collision theory </span>
<span>spontaneous reaction
</span>
The term that best relate to ben's observation is REACTION RATE.
Reaction rate is defined as the speed at which the chemical reaction proceeds. It either is the amount of concentration of a product in a given unit of time or the concentration of the reactant that is being consumed in a unit of time.
Dipole interactions are observed in covalent bonds. In ionic bonding, permanent transfer of electrons occurs and due to this dipole-dipole interactions are not observed. In covalent bonding, electron cloud is shared between 2 atoms. If this electron cloud is not shared equally between them, polarities are formed in a molecule. And hence we say that the molecule is polar. For a molecule to be polar, there should be electronegativity difference between them. Atom with greater electronegative attracts electron cloud more towards itself whereas atom with lesser electronegative attracts electron cloud less. But there is no permanent transfer of electrons. Due to this electronegativity differences, atom with more electronegative gains partial negative charge and atom with lesser electronegative value gains partial positive charge. The charge is partial because there is no complete transfer of electrons.
I believe Winter is <span>your answer.</span>