The heat required to vaporize 43.9 g of acetone at its boiling point is calculated as below
the heat of vaporization of acetone at its boiling point is 29.1 kj/mole
find the moles of acetone = mass/molar mass
= 43.9g /58 g/mol =0.757 moles
heat (Q) = moles x heat of vaporization
= 29.1 kj/mole x 0.757 moles = 22.03 kj
The concentration of hydrogen ions in a solution is a measure of its acidity. So the correct option is (b) false.
When an Arrhenius acid is dissolved in water, hydrogen ions are produced:
H+(aq) + A- = HA + H2O (aq)
Here, H+ is the hydrogen cation, A- is the solvated anion, also known as the conjugate base, and HA is the non-dissociated acid. When an Arrhenius base is dissolved in water, hydroxide ions are produced:
BOH + H2O → B+(aq) + OH-(aq)
Is a material with at least one hydrogen atom that has the ability to split apart in an aqueous solution to produce an anion and an H + ion (a proton), creating an acidic solution. Bases are substances that, when dissolved in water, create hydroxide ions (OH) and a cation, resulting in a basic solution.
Learn more about hydrogen here:
brainly.com/question/16979348
#SPJ4
HCI is one of the most common acids out of the following
Answer is: n<span>o, because the ion product is less than the Ksp of lead iodide. </span>
Chemical dissociation 1: KI(s) → K⁺(aq) + I⁻(aq).
Chemical dissociation 2: Pb(NO₃)₂(s) → Pb²⁺(aq) + 2NO₃⁻(aq).
Chemical reaction: Pb²⁺(aq) + 2I⁻(aq) → PbI₂(s).
Ksp(PbI₂) = 7.1·10⁻⁹.
V = 500 mL ÷ 1000 mL/L = 0.5 L.
c(KI) = c(I⁻) = 0.0025 mol ÷ 0.5 L.
c(I⁻) = 0.005 M.
c(Pb(NO₃)₂) = c(Pb²⁺) = 0.00004 mol ÷ 0.5 L.
c(Pb²⁺) = 0.00008 M.
Q = c(Pb²⁺) · c(I⁻)².
Q = 8·10⁻⁵ M · (5·10⁻³ M)².
Q = 2·10⁻⁹; <span> the ion product.</span>
It would be C because It will have a lower activation energy than Trial A.