Answer:
All chemical equations goes to the law of conservation of mass which says that matter can not be destroyed nor created which means there has to be an equal amount of atoms of each element on both sides of the equation. I hope that helps, I'm learning this as well.
I would say b and d but I wouldn’t really know :/
Answer:
P' = 41.4 mmHg → Vapor pressure of solution
Explanation:
ΔP = P° . Xm
ΔP = Vapor pressure of pure solvent (P°) - Vapor pressure of solution (P')
Xm = Mole fraction for solute (Moles of solvent /Total moles)
Firstly we determine the mole fraction of solute.
Moles of solute → Mass . 1 mol / molar mass
20.2 g . 1 mol / 342 g = 0.0590 mol
Moles of solvent → Mass . 1mol / molar mass
60.5 g . 1 mol/ 18 g = 3.36 mol
Total moles = 3.36 mol + 0.0590 mol = 3.419 moles
Xm = 0.0590 mol / 3.419 moles → 0.0172
Let's replace the data in the formula
42.2 mmHg - P' = 42.2 mmHg . 0.0172
P' = - (42.2 mmHg . 0.0172 - 42.2 mmHg)
P' = 41.4 mmHg
C.
evolution is the change a species goes through
Answer:
P₂ = 2.7 atm
Explanation:
Given data:
Initial temperature = 30°C
Initial pressure = 3.00 atm
Final temperature = -5°C
Final pressure = ?
Solution:
Initial temperature = 30°C = 30 + 273 = 303 K
Final temperature = -5°C = -5 + 273 = 268 K
According to Gay-Lussac Law,
The pressure of given amount of a gas is directly proportional to its temperature at constant volume and number of moles.
Mathematical relationship:
P₁/T₁ = P₂/T₂
Now we will put the values in formula:
3.0 atm / 303 K = P₂/268 K
P₂ = 3.0 atm × 268 K / 303 K
P₂ = 804 atm. K /293 K
P₂ = 2.7 atm