<span>neither habitat destruction has nothing to do with geothermal energy.
</span>
Answer:
The best answer to the question: If every gene has a tissue-specific and signal-dependent transcription pattern, how can such a small number of transcriptional regulatory proteins generate a much larger set of transcriptional patterns? Would be:
Because transcriptional regulators, which are the ones responsible for initiating, and stopping, transcription of RNA into protein, often work in pairs, one goes with the other, and thus increase the regulatory capabilities over gene expression so that the genes translated into RNA and then transcribed into aminoacids in protein chains, actually code for the correct protein types.
These regulators will both stand, as appropriate, on a specific gene to promote its transcription, or prevent it, depending on the different signaling mechanisms received.
Answer:
The animal kingdom is unique among eukaryotic organisms because most animal tissues are bound together in an extracellular matrix by a triple helix of protein known as collagen. Plant and fungal cells are bound together in tissues or aggregations by other molecules, such as pectin.
Explanation:
The ability to maintain different environments inside a single cell allows eukaryotic cells to carry out complex metabolic reactions that prokaryotes cannot. In fact, it's a big part of the reason why eukaryotic cells can grow to be many times larger than prokaryotic ones.
Hope this helps!!!!!
Answer:
Preservation of remains (protection against scavenging, erosion and environmental damage) High pressure to promote mineralisation of remains (i.e. turn hard body parts into fossilised rocks) Anoxic (low oxygen) conditions to protect against oxygen damage and prevent decomposition by saprotrophs
Explanation:
Answer:
The rise and fall of the tides. Tides create a current in the oceans, which are strongest near the shore, and in bays and estuaries along the coast. ...
Wind. Winds drive currents that are at or near the ocean's surface. ...
Thermohaline circulation.
Explanation: