Answer:
fluid transfer of heat by the motion of the particles of gas or fluid
Answer: Moon, Mercury, Mars, Venus, Earth
Explanation:
Answer:
(A) Consists of a small number of tiny particles that are far apart- relative in their size.
Explanation:
An <em>ideal gas</em> is defined as a simplification of a real gas, with punctual particles, in which all collisions are elastic, with random displacements and with no attractive force between them.
The assumption of the particles being punctual make clear that they do not have size at all. So if they were far apart-relative in their size, they can not collide each other, that is why assumption (B) can not be possible (<u><em>for that particular case</em></u>).
It is clear that (A) is not an assumption for an ideal gas, because do not fit in any of its properties.
Elastic collision: It is a case in which the energy is conserved (Kinetic Energy).
Kinetic Energy: It is the energy that will have an object as a consequence of its movement.
Dispersion angle = 0.3875 degrees.
Width at bottom of block = 0.09297 cm
Thickness of rainbow = 0.07038 cm
Snell's law provides the formula that describes the refraction of light. It is:
n1*sin(θ1) = n2*sin(θ2)
where
n1, n2 = indexes of refraction for the different mediums
θ1, θ2 = angle of incident rays as measured from the normal to the surface.
Solving for θ2, we get
n1*sin(θ1) = n2*sin(θ2)
n1*sin(θ1)/n2 = sin(θ2)
asin(n1*sin(θ1)/n2) = θ2
The index of refraction for air is 1.00029, So let's first calculate the angles of the red and violet rays.
Red:
asin(n1*sin(θ1)/n2) = θ2
asin(1.00029*sin(40.80)/1.641) = θ2
asin(1.00029*0.653420604/1.641) = θ2
asin(0.398299876) = θ2
23.47193844 = θ2
Violet:
asin(n1*sin(θ1)/n2) = θ2
asin(1.00029*sin(40.80)/1.667) = θ2
asin(1.00029*0.653420604/1.667) = θ2
asin(0.39208764) = θ2
23.08446098 = θ2
So the dispersion angle is:
23.47193844 - 23.08446098 = 0.38747746 degrees.
Now to determine the width of the beam at the bottom of the glass block, we need to calculate the difference in the length of the opposite side of two right triangles. Both triangles will have a height of 11.6 cm and one of them will have an angle of 23.47193844 degrees, while the other will have an angle of 23.08446098 degrees. The idea trig function to use will be tangent, where
tan(θ) = X/11.6
11.6*tan(θ) = X
So for Red:
11.6*tan(θ) = X
11.6*tan(23.47193844) = X
11.6*0.434230136 = X
5.037069579 = X
And violet:
11.6*tan(θ) = X
11.6*tan(23.08446098) = X
11.6*0.426215635 = X
4.944101361 = X
So the width as measured from the bottom of the block is: 5.037069579 cm - 4.944101361 cm = 0.092968218 cm
The actual width of the beam after it exits the flint glass block will be thinner. The beam will exit at an angle of 40.80 degrees and we need to calculate the length of the sides of a 40.80/49.20/90 right triangle. If you draw the beams, you'll realize that:
cos(θ) = X/0.092968218
0.092968218*cos(θ) = X
0.092968218*cos(40.80) = X
0.092968218*0.756995056 = X
0.070376481 = X
So the distance between the red and violet rays is 0.07038 cm.
Answer:
we assume that it starts with a velocity of 10m/s. At 2m height above ground level, its velocity decreases at 3m above ground level
for its way down the velocity at 3m on its way down is more than its velocity at 2m on its way down.
Explanation:
A student throws a small rock straight upwards. The rock rises to its highest point and then falls back down. How does the speed of the rock at 2m on the way down compare with its speed at 2m on the way up?
It decreases in speed on its way down and increases in speed on its way down.
it decreases in speed on its way up because the the vertical motion is against the earths gravitational pull on an object to the earth's center
.It increases in speed on his way down because its under the influence of gravity
from newton's equation of motion we can check by
using V^2=u^2+2as
we assume that it starts with a velocity of 10m/s. At 2m height above ground level, its velocity decreases at 3m above ground level
for its way down the velocity at 3m on its way down is more than its velocity at 2m on its way down.