because he is carrying more mass and as the ground is muddy his feet goes in due to the pull of gravity
The spring constant is 4 N/m
Explanation:
When a spring is stretched/compressed by the application of a force, the relationship between the magnitude of the force applied and the elongation of the spring is given by Hooke's law:

where
F is the magnitude of the spring applied
k is the spring constant
x is the elongation of the spring, relative to its equilibrium position
For the spring in this problem, we have:
F = 0.12 N (force applied)
x = 3 cm = 0.03 m (elongation of the spring)
Therefore, we can solve the formula for k to find the spring constant:

Learn more about forces:
brainly.com/question/8459017
brainly.com/question/11292757
brainly.com/question/12978926
#LearnwithBrainly
Answer:
0° C
Explanation:
Given that
Mass of ice, m = 50g
Mass of water, m(w) = 50g
Temperature of ice, T(i) = 0° C
Temperature of water, T(w) = 80° C
Also, it is known that
Specific heat of water, c = 1 cal/g/°C
Latent heat of ice, L(w) = 89 cal/g
Let us assume T to be the final temperature of mixture.
This makes the energy balance equation:
Heat gained by ice to change itself into water + heat gained by melted ice(water) to raise its temperature at T° C = heat lost by water to reach at T° C
m(i).L(i) + m(i).c(w)[T - 0] = m(w).c(w)[80 - T], on substituting, we have
50 * 80 + 50 * 1(T - 0) = 50 * 1(80 - T)
4000 + 50T = 4000 - 50T
0 = 100 T
T = 0° C
Thus, the final temperature is 0° C
Answer:
5.71428571422 m/s
Explanation:
u = Initial velocity = 20 m/s
v = Final velocity
s = Displacement
a = Acceleration
Time taken = 15-1 = 14 s
Distance traveled in 1 second = 


The speed as she reaches the light at the instant it turns green is 5.71428571422 m/s