1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tanya [424]
3 years ago
13

Object A is moving due east, while object B is moving due north. They collide and stick together in a completely inelastic colli

sion. Momentum is conserved. Object A has a mass of m A = 17.0 kg and an initial velocity of v 0A = 8.00 m/s, due east. Object B, however has a mass of m B = 29.0 kg and an initial velocity of v 0B = 5.00 m/s, due north. Find the magnitude and direction of the total momentum of the two-object system after the collision.
Physics
1 answer:
serious [3.7K]3 years ago
8 0

Answer:

pf = 198.8 kg*m/s

θ = 46.8º N of E.

Explanation:

  • Since total momentum is conserved, and momentum is a vector, the components of the momentum along two axes perpendicular each other must be conserved too.
  • If we call the positive x- axis to the W-E direction, and the positive y-axis to the S-N direction, we can write the following equation for the initial momentum along the x-axis:

       p_{ox} = p_{oAx} + p_{oBx}  (1)

  • We can do exactly the same for the initial momentum along the y-axis:

       p_{oy} = p_{oAy} + p_{oBy}  (2)

  • The final momentum along the x-axis, since the collision is inelastic and both objects stick together after the collision, can be written as follows:

       p_{fx} =  (m_{A} + m_{B} ) * v_{fx}  (3)

  • We can repeat the process for the y-axis, as follows:

       p_{fy} =  (m_{A} + m_{B} ) * v_{fy}  (4)

  • Since (1) is equal to (3), replacing for the givens, and since p₀Bₓ = 0, we can solve for vfₓ as follows:

       v_{fx} = \frac{p_{oAx}}{(m_{A}+ m_{B)}} = \frac{m_{A}*v_{oAx} }{(m_{A}+ m_{B)}} =\frac{17.0kg*8.00m/s}{46.0kg} =  2.96 m/s (5)

  • In the same way, we can find the component of the final momentum along the y-axis, as follows:

       v_{fy} = \frac{p_{oBy}}{(m_{A}+ m_{B)}} = \frac{m_{B}*v_{oBy} }{(m_{A}+ m_{B)}} =\frac{29.0kg*5.00m/s}{46.0kg} =  3.15 m/s (6)

  • With the values of vfx and vfy, we can find the magnitude of the final speed of the two-object system, applying the Pythagorean Theorem, as follows:

      v_{f} = \sqrt{v_{fx} ^{2} + v_{fy} ^{2}} = \sqrt{(2.96m/s)^{2} + (3.15m/s)^{2}} = 4.32 m/s (7)

  • The magnitude of the final total momentum is just the product of the combined mass of both objects times the magnitude of the final speed:

       p_{f} = (m_{A} + m_{B})* v_{f}  = 46 kg * 4.32 m/s = 198.8 kg*m/s (8)

  • Finally, the angle that the final momentum vector makes with the positive x-axis, is the same that the final velocity vector makes with it.
  • We can find this angle applying the definition of tangent of an angle, as follows:

       tg \theta = \frac{v_{fy}}{v_{fx}} = \frac{3.15 m/s}{2.96m/s} = 1.06 (9)

       ⇒ θ = tg⁻¹ (1.06) = 46.8º N of E

You might be interested in
Being willing to sincerely apologize for mistakes errors and blunders goes a long way toward
Oduvanchick [21]

Answer:

All of the above ! Hope this helps! ♥

Explanation:

4 0
2 years ago
According to the nebular theory of solar system formation, what key difference in their early formation explains why the jovian
svp [43]

Answer:

The Jovian planets formed beyond the Frostline while the terrestrial planets formed in the Frostline in the solar nebular

Explanation:

The Jovian planets are the large planets namely Saturn, Jupiter, Uranus, and Neptune. The terrestrial planets include the Earth, Mercury, Mars, and Venus. According to the nebular theory of solar system formation, the terrestrial planets were formed from silicates and metals. They also had high boiling points which made it possible for them to be located very close to the sun.

The Jovian planets formed beyond the Frostline. This is an area that can support the planets that were made up of icy elements. The large size of the Jovian planets is as a result of the fact that the icy elements were more in number than the metal components of the terrestrial planets.

3 0
3 years ago
Which statement is accurate about seasonal temperatures in North carolina
Alex
Where is the multiple choice
7 0
3 years ago
What is the velocity of an object that has a momentum of 4,000 kg-m/s and a mass of 115 kg? Round to the nearest hundredth.
julia-pushkina [17]
<h2>Answer: 34.78 m/s</h2>

Explanation:

The momentum p is given by the following equation:

p=m.V   (1)

Where:

m is the mass of the object

V is the velocity of the object

Finding the velocity from (1):

V=\frac{p}{m}   (2)

V=\frac{4000kg.m/s}{115kg}  

<u>Finally:</u>

V=34.78m/s >>>This is the velocity of the object

4 0
3 years ago
Read 2 more answers
Consider a model of a hydrogen atom in which an electron is in a circular orbit of radius r = 5.92×10−11 m around a stationary p
DaniilM [7]

Answer:

2.068 x 10^6 m / s

Explanation:

radius, r = 5.92 x 10^-11 m

mass of electron, m = 9.1 x 10^-31 kg

charge of electron, q = 1.6 x 10^-19 C

As the electron is revolving in a circular path, it experiences a centripetal force which is balanced by the electrostatic force between the electron and the nucleus.

centripetal force = \frac{mv^{2}}{r}

Electrostatic force = \frac{kq^{2}}{r^{2}}

where, k be the Coulombic constant, k = 9 x 10^9 Nm^2 / C^2

So, balancing both the forces we get

\frac{kq^{2}}{r^{2}}=\frac{mv^{2}}{r}

v=\sqrt{\frac{kq^{2}}{mr}}

v=\sqrt{\frac{9\times 10^{9}\times1.6\times 10^{-19}\times 1.6\times 10^{-19}}{9.1\times 10^{-31}\times 5.92\times10^{-11}}}

v = 2.068 x 10^6 m / s

Thus, the speed of the electron is give by  2.068 x 10^6 m / s.

6 0
3 years ago
Other questions:
  • Convert 540 cg= ____ Hg
    13·1 answer
  • On a warm, balmy summer day you decide to relax by watching the latest building renovation in your neighborhood. You notice that
    13·1 answer
  • An asteroid orbits the Sun at an average distance of a= 4 AU. How long does it take to orbit the Sun?Use Kepler’s Third Law(p2=
    5·1 answer
  • A 3.5 kg block slides along a frictionless horizontal with a speed of 2.5 m/s. After sliding a distance of 5 m, the block makes
    15·1 answer
  • A dumbbell-shaped object is composed by two equal masses, m, connected by a rod of negligible mass and length r. If I_1 is the m
    11·1 answer
  • Why do we break up angled forces into components? How does that help us solve force problems?
    14·1 answer
  • a closed system consitts of a pendumluem that is swinging back and forth. if the pendulums gravitational potential energy decrea
    8·1 answer
  • 9. From this lab, we learn that the electric field and electric potential depend on both, the magnitude of the source charge (q)
    12·1 answer
  • HELP PLEASE!!!!!!!
    9·2 answers
  • Please help!!!!!!!!!!!!!!!!
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!