1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tanya [424]
3 years ago
13

Object A is moving due east, while object B is moving due north. They collide and stick together in a completely inelastic colli

sion. Momentum is conserved. Object A has a mass of m A = 17.0 kg and an initial velocity of v 0A = 8.00 m/s, due east. Object B, however has a mass of m B = 29.0 kg and an initial velocity of v 0B = 5.00 m/s, due north. Find the magnitude and direction of the total momentum of the two-object system after the collision.
Physics
1 answer:
serious [3.7K]3 years ago
8 0

Answer:

pf = 198.8 kg*m/s

θ = 46.8º N of E.

Explanation:

  • Since total momentum is conserved, and momentum is a vector, the components of the momentum along two axes perpendicular each other must be conserved too.
  • If we call the positive x- axis to the W-E direction, and the positive y-axis to the S-N direction, we can write the following equation for the initial momentum along the x-axis:

       p_{ox} = p_{oAx} + p_{oBx}  (1)

  • We can do exactly the same for the initial momentum along the y-axis:

       p_{oy} = p_{oAy} + p_{oBy}  (2)

  • The final momentum along the x-axis, since the collision is inelastic and both objects stick together after the collision, can be written as follows:

       p_{fx} =  (m_{A} + m_{B} ) * v_{fx}  (3)

  • We can repeat the process for the y-axis, as follows:

       p_{fy} =  (m_{A} + m_{B} ) * v_{fy}  (4)

  • Since (1) is equal to (3), replacing for the givens, and since p₀Bₓ = 0, we can solve for vfₓ as follows:

       v_{fx} = \frac{p_{oAx}}{(m_{A}+ m_{B)}} = \frac{m_{A}*v_{oAx} }{(m_{A}+ m_{B)}} =\frac{17.0kg*8.00m/s}{46.0kg} =  2.96 m/s (5)

  • In the same way, we can find the component of the final momentum along the y-axis, as follows:

       v_{fy} = \frac{p_{oBy}}{(m_{A}+ m_{B)}} = \frac{m_{B}*v_{oBy} }{(m_{A}+ m_{B)}} =\frac{29.0kg*5.00m/s}{46.0kg} =  3.15 m/s (6)

  • With the values of vfx and vfy, we can find the magnitude of the final speed of the two-object system, applying the Pythagorean Theorem, as follows:

      v_{f} = \sqrt{v_{fx} ^{2} + v_{fy} ^{2}} = \sqrt{(2.96m/s)^{2} + (3.15m/s)^{2}} = 4.32 m/s (7)

  • The magnitude of the final total momentum is just the product of the combined mass of both objects times the magnitude of the final speed:

       p_{f} = (m_{A} + m_{B})* v_{f}  = 46 kg * 4.32 m/s = 198.8 kg*m/s (8)

  • Finally, the angle that the final momentum vector makes with the positive x-axis, is the same that the final velocity vector makes with it.
  • We can find this angle applying the definition of tangent of an angle, as follows:

       tg \theta = \frac{v_{fy}}{v_{fx}} = \frac{3.15 m/s}{2.96m/s} = 1.06 (9)

       ⇒ θ = tg⁻¹ (1.06) = 46.8º N of E

You might be interested in
Explain whether there can be forces act-
Xelga [282]

Technically friction is acting on the car because it is still rubbing against the street and gravity is pulling the car down preventing it from floating??? lol

5 0
2 years ago
Two manned satellites approaching one another at a relative speed of 0.550 m/s intend to dock. The first has a mass of 2.50 ✕ 10
NNADVOKAT [17]

Answer: Their final relative velocity is -0.412 m/s.

Explanation:

According to the law of conservation,

      m_{1}v_{1} + m_{2}v_{2} = (m_{1} + m_{2})v

Putting the given values into the above formula as follows.

      m_{1}v_{1} + m_{2}v_{2} = (m_{1} + m_{2})v

     2.50 \times 10^{3} kg \times 0 m/s + 7.50 \times 10^{3} kg \times -0.550 m/s = (2.50 \times 10^{3} kg + 7.50 \times 10^{3} kg)v

           -4.12 \times 10^{3} kg m/s = (10^{4} kg) v

                   v = \frac{-4.12 \times 10^{3} kg m/s}{10^{4} kg}

                      = -0.412 m/s

Thus, we can conclude that their final relative velocity is -0.412 m/s.

8 0
3 years ago
Why does data need to be reliable
Karolina [17]
So results can be shared and used by other scientists that want to use or replicate your experiment.
8 0
3 years ago
Read 2 more answers
A spring has a spring constant of 330 n/m. how far is the spring compressed when 150 newtons of force are used?
pishuonlain [190]

Answer:

I think its B

Explanation:

5 0
3 years ago
A wire carrying a 29.0 A current passes between the poles of a strong magnet such that the wire is perpendicular to the magnet's
Dmitrij [34]

Answer:

2.59 T

Explanation:

Parameters given:

Current flowing through the wire, I = 29 A

Angle between the magnetic field and wire, θ = 90°

Magnetic force, F = 2.25 N

Length of wire, L = 3 cm = 0.03 m

The magnetic force, F, is related to the magnetic field, B, by the equation below:

F = I * L * B * sinθ

Inputting the given parameters:

2.25 = 29 * 0.03 * B * sin90

2.25 = 0.87 * B

=> B = 2.25/0.87

B = 2.59 T

The magnetic field strength between the poles is 2.59 T

4 0
3 years ago
Other questions:
  • Draw distance time grap for a body at rest
    10·1 answer
  • Describe the core-mantle-crust structures of the terrestrial worlds. What is differentiation? What do we mean by the lithosphere
    15·1 answer
  • identical springs are placed side-by-side (in parallel), and connected to a large massive block. The stiffness of the 43-spring
    7·1 answer
  • An average person can reach a maximum height of about 60 {\rm cm} when jumping straight upfrom a crouched position. During the j
    11·1 answer
  • A toy cannon tosses a rubber ball straight upward. A motion sensor measures the speed of the ball as it leaves the cannon. Using
    11·1 answer
  • what is formed when two or more substances are so evenly mixed that you can't see the different parts
    11·1 answer
  • Jason applies a force of 4.00 newtons to a sled at an angle 62.0 degrees from the ground. What is the component of force effecti
    9·1 answer
  • In water, sound travels 1500 m/s. A whale sings at a frequency of 17 Hz. What will be the length of the sound wave?
    6·1 answer
  • What is another way to describe the vector 100 m/s down
    5·1 answer
  • A stone is dropped from a high cliff vertically. After 6
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!