Answer:
d. why matter exists
Explanation:
The kind of questions that chemistry CANNOT answer is "why matter exists".
In Chemistry, question of how the properties, composition and structure of substances are is answered. Also, the transformations that these substances undergo, and the energy that they release or absorbe during the transformation processes are revealed in chemistry.
Chemistry can answer the question of what forms of matter exists but cannot answer why matter actually exists.
<h3>
Answer:</h3>
200 mL
<h3>
Explanation:</h3>
Concept tested: Dilution formula
We are given;
- Concentration of stock solution as 1.00 M
- Volume of the stock solution as 50 mL
- Molarity of the dilute solution as 0.25 M
We are required to calculate the volume of diluted solution;
- The stock solution is the original solution before dilution while diluted solution is the solution after dilution.
- Using the dilution formula we can determine the volume of diluted solution;
M1V1 = M2V2
Rearranging the formula;
V2 = M1V1 ÷ M2
= (1.00 M × 50 mL) ÷ 0.25 M
= 200 mL
Therefore, a volume of 200mL of 0.25 M solution could be made from the stock solution.
Answer:
The correct option here is the first option
Explanation:
Covalent bond is the bond that involves the sharing of electrons between the participating atoms. The electrons (in the outermost shells of the atoms) that are involved this sharing are called the "shared pair" while those electrons (in the outermost shells of the atoms) that are not involved in this sharing are called the "lone pair". Bonding eventually leads to each of the participating atoms achieving it's octet configuration.
Carbon will bind covalently with fluorine (to form carbon tetrafluoride) with each of the electrons on the outermost shell of the carbon been shared covalently with fluorine atoms (that also requires just one electron to achieve it's octet configuration). Thus, at the end, we would have one carbon atom being covalently linked to four flourine atoms.
<u>Answer:</u> The molar mass of the gas is 35.87 g/mol.
<u>Explanation:</u>
To calculate the mass of gas, we use the equation given by ideal gas:
PV = nRT
or,

where,
P = Pressure of gas = 945 mmHg
V = Volume of the gas = 0.35 L
m = Mass of gas = 0.527 g
M = Molar mass of gas = ? g/mo
R = Gas constant = 
T = Temperature of gas = ![88^oC=[88+273]=361K](https://tex.z-dn.net/?f=88%5EoC%3D%5B88%2B273%5D%3D361K)
Putting values in above equation, we get:

Hence, the molar mass of the gas is 35.87 g/mol.