Yes; every object has energy and you cannot create or destroy energy but you can transfer it.
The reaction for the formation of MgO(s):
2 Mg (s) + O2(g) -à
2MgO(s) ΔH = -601.24
kJ/mol
<span>The enthalpy
information is taken from: http://webbook.nist.gov/cgi/inchi?ID=C1309484&Mask=2</span>
From the equation and with an enthalpy change of -231 kJ:
-231 kJ * 2 mol Mg * (1/-601.24 kJ/mol) = 0.76841 mol Mg
Then, with the molar mass of MgO = 40.3,
0.76841 mol Mg *(2 mol MgO/2 mol Mg)* 40.3 g/mol MgO = <span>30.967 g MgO</span>
Answer:
Option D which is Sn4- is the answer
Answer:
V₂ = 0.656 L
Explanation:
Given data:
Initial volume = 3.5 L
Initial pressure = 2.5 KPa
Final volume = ?
Final pressure = 100 mmHg (100/7.501=13.33 KPa)
Solution:
The given problem will be solved through the Boyle's law,
"The volume of given amount of gas is inversely proportional to its pressure by keeping the temperature and number of moles constant"
Mathematical expression:
P₁V₁ = P₂V₂
P₁ = Initial pressure
V₁ = initial volume
P₂ = final pressure
V₂ = final volume
Now we will put the values in formula,
P₁V₁ = P₂V₂
2.5 KPa × 3.5 L = 13.33 KPa × V₂
V₂ = 8.75 KPa. L/13.33 KPa
V₂ = 0.656 L
Answer:
More energy is required to raise its temperature. Therefore, temperature does not stay the same when heat energy increases.