Answer:
The situation given in option A and B are examples for moving an object toward left side while the option C and option D are examples for moving an object toward right side. Option B will also be an example for not moving the object.
Explanation:
As per the option A statement, the force acting towards left is greater than the force acting toward right side. So the net force will be towards the direction having maximum magnitude. Thus, the box will move toward left side in option A. The same situation arises for the object in option B. But here the difference in the forces is only 1 N, so the change in the position of the object will be very less. Thus it may look like there is no acceleration in the box of option B.
Similarly, the force acting on the objects given in option C and D have magnitude greater towards the right side than towards the left side. So these two will be accelerated toward the right side.
R=ρ
Where, R is resistance
ρ is resistivity,
L is length and
A is cross sectional area
Given, L= 3.5m
A=5.26 x 10⁻⁶ m²
ρ=1.68×10⁻⁸ ohms m
∴ R= 
⇒ R=1.11×10⁻² ohms
Unit is m^3 or metres cubed. You need to multiply the three dimensions of the block to get the volume.
A ruler can be used to measure the edges.
Answer:

Explanation:
mass of bob = M
string is fixed at C, at position A the string is horizontal and at position B teh string is vertical.
Let the length of the string is L.
At the point C, it has maximum potential energy which is equal to
U = M x g x L ..... (1)
At the position B, it has maximum kinetic energy and the velocity is v.
K = 1/2 Mv² ...... (2)
According to the conservation of energy
The potential energy at the position A is equal to the kinetic energy at position B.
M x g x L = 1/2 M x v²
v² = 2 x g x L
