1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ugo [173]
2 years ago
6

Gas A is composed of diatomic molecules (two atoms to a molecule) of a pure element. Gas B is composed of monoatomic molecules (

one atom to a molecule) of another pure element. Gas A has three times the mass of an equal volume of gas B at the same temperature and pressure. How do the atomic masses of elements A and B compare?
Physics
1 answer:
dem82 [27]2 years ago
4 0
Because of the number of atoms they vary
You might be interested in
A yoyo with a mass of m = 150 g is released from rest as shown in the figure.
avanturin [10]

(1) The linear acceleration of the yoyo is 3.21 m/s².

(2) The angular acceleration of the yoyo is 80.25 rad/s²

(3) The  weight of the yoyo is 1.47 N

(4) The tension in the rope is 1.47 N.

(5) The angular speed of the yoyo is 71.385 rad/s.

<h3> Linear acceleration of the yoyo</h3>

The linear acceleration of the yoyo is calculated by applying the principle of conservation of angular momentum.

∑τ = Iα

rT - Rf = Iα

where;

  • I is moment of inertia
  • α is angular acceleration
  • T is tension in the rope
  • r is inner radius
  • R is outer radius
  • f is frictional force

rT - Rf = Iα  ----- (1)

T - f = Ma  -------- (2)

a = Rα

where;

  • a is the linear acceleration of the yoyo

Torque equation for frictional force;

f = (\frac{r}{R} T) - (\frac{I}{R^2} )a

solve (1) and (2)

a = \frac{TR(R - r)}{I + MR^2}

since the yoyo is pulled in vertical direction, T = mg a = \frac{mgR(R - r)}{I + MR^2} \\\\a = \frac{(0.15\times 9.8 \times 0.04)(0.04 - 0.0214)}{1.01 \times 10^{-4} \ + \ (0.15 \times 0.04^2)} \\\\a = 3.21 \ m/s^2

<h3>Angular acceleration of the yoyo</h3>

α = a/R

α = 3.21/0.04

α = 80.25 rad/s²

<h3>Weight of the yoyo</h3>

W = mg

W = 0.15 x 9.8 = 1.47 N

<h3>Tension in the rope </h3>

T = mg = 1.47 N

<h3>Angular speed of the yoyo </h3>

v² = u² + 2as

v² = 0 + 2(3.21)(1.27)

v² = 8.1534

v = √8.1534

v = 2.855 m/s

ω = v/R

ω = 2.855/0.04

ω = 71.385 rad/s

Learn more about angular speed here: brainly.com/question/6860269

#SPJ1

3 0
1 year ago
What is the kinetic energy of a 0.5 kg puppy that is running 1.5m/s
bija089 [108]

Answer: Well the answer is KE = 5.625E-7 i just don't know the units for it...

Hope this helps....... Stay safe and have a Merry Christmas!!!!!!!!!! :D

3 0
3 years ago
Un movil viaja a 40km/h y comienza a reducir su velocidad a partir del instante t=0. Al cabo de 6 segundo se detiene completamen
aleksklad [387]

Answer:

1,85 m / s²

Explanation:

De la pregunta anterior, se obtuvieron los siguientes datos:

Velocidad inicial (u) = 40 km / h

Hora inicial (t₁) = 0

Tiempo final (t₂) = 6 s

Velocidad final (v) = 0

Aceleración (a) =?

A continuación, convertiremos 40 km / ha m / s. Esto se puede obtener de la siguiente manera:

1 km / h = 0,2778 m / s

Por lo tanto,

40 km / h = 40 km / h × 0,2778 m / s / 1 km / h

40 km / h = 11,11 m / s

Por tanto, 40 km / h equivalen a 11,11 m / s.

Finalmente, determinaremos la aceleración del móvil durante el período en el que desaceleró. Esto se puede obtener de la siguiente manera:

Velocidad inicial (u) = 11,11 m / s

Hora inicial (t₁) = 0

Tiempo final (t₂) = 6 s

Velocidad final (v) = 0

Aceleración (a) =?

a = (v - u) / (t₂ - t₁)

a = (0 - 11,11) / (6 - 0)

a = - 11,11 / 6

a = –1,85 m / s²

Por tanto, la aceleración del móvil durante el período en el que se ralentizó es de –1,85 m / s²

6 0
3 years ago
At its widest point, the diameter of a bottlenose dolphin is 0.50 m. Bottlenose dolphins are particularly sleek, having a drag c
fiasKO [112]

Answer:

497.00977 N

3742514.97005

Explanation:

\rho = Density of water = 1000 kg/m³

C = Drag coefficient = 0.09

v = Velocity of dolphin = 7.5 m/s

r = Radius of bottlenose dolphin = 0.5/2 = 0.25 m

A = Area

Drag force

F_d=\frac{1}{2}\rho CAv^2\\\Rightarrow F_d=\frac{1}{2}\times 1000 \times 0.09(\pi 0.25^2)7.5^2\\\Rightarrow F_d=497.00977\ N

The drag force on the dolphin's nose is 497.00977 N

at 20°C

\mu = Dynamic viscosity = 1.002\times 10^{-3}\ Pas

Reynold's Number

Re=\frac{\rho vd}{\mu}\\\Rightarrow Re=\frac{1000\times 7.5\times 0.5}{1.002\times 10^{-3}}\\\Rightarrow Re=3742514.97005

The Reynolds number is 3742514.97005

8 0
3 years ago
An object is thrown 16m/s straight up from a 7m tall cliff. How much time does it take to hit the ground below
harkovskaia [24]

Answer:

0,54 sec

Explanation:

t=s/v

t=7/13 s=0,54sec

5 0
3 years ago
Other questions:
  • A bag is gently pushed off the top of a wall at A and swings in a vertical plane at the end of a rope of length l. Determine the
    12·1 answer
  • In order to be sure a grinder used in production is operating properly, what feature of the grinder should be checked daily?
    9·1 answer
  • Calculate how much work you need to move the 130N trunk to a ledge 2 n above
    5·2 answers
  • What properties of Pluto might make scientists think that it is a Kuiper Belt Object?
    9·1 answer
  • the sole of a tennis shoe has a surface area of 0.0290 m^2. if it is worn by a 65.0 kg person, what pressure does the shoe exert
    10·1 answer
  • Which statement describes how a covalent molecule would be formed?
    10·1 answer
  • what different forms of energy are demonstrated by tv remote, flashlight, string lol ights, clock, and Toys​
    7·1 answer
  • The movement of crustal plates is best described as a:
    10·2 answers
  • Suppose a large housefly 3.0 m away from you makes sound with an intensity level of 40.0 dB. What would be the sound intensity l
    11·1 answer
  • At the distance of Jupiter (6 times further away from the Sun than Earth) the amount of sunlight received per square centimeter
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!