Large molecules such as hormones materials are expelled from cells during exocytosis
<u>Explanation:</u>
The materials inside the cells are transferred to the outside of the cell and this manner is termed as Exocytosis. This method is termed as a kind of active transport since it needs energy for this transformation process. One of the major purposes of this process is to discharge trash matters like hormones and proteins.
For a cell to cell transmission and chemical signal messaging these methods are essential. Proteins that are newly generated are transferred to the peak of the plasma membrane by exocytosis. There are three general pathways of exocytosis.
Answer:
They probably use aerobic respiration.
Explanation:
A travel distance of 11.500 kilometers in 9 days covered by flying surely requires a lot of energy.
- If cells are fermenting, the ATP (energy) they generate only comes from glycolysis, which produces 2 ATP molecules.
- If they are using aerobic respiration, glucose is completely oxidized to CO₂ through glycolysis and the Citric Acid Cycle, and the electrons enter the electron transport chain to finally reduce oxygen into water. In the complete process, up to 36 ATP molecules are produced.
In sum, aerobic respiration is much more efficient to generate energy than fermentation, so it's probably the main metabolism of the flight muscles in bar-tailed godwits.
Answer:
Transport proteins allows only enzymes to pass through the membrane
Explanation:
Answer:
The turtles were super turtles and were named the teenage mutant ninja turtles
Explanation:
It’s proven
Plant produces glucose in the chloroplast through the process of photosynthesis. Calvin cycle is basically the biological process through which glucose is produced. The steps involved are as follows:
1. Absorbed CO2 is added to RuBP and 6C sugar is formed.
2. Breaking of 6C sugar into two 3-phosphoglycerate molecules
3. ATP gives phosphate group to form 3-phosphoglycerate which is later on converted into 1,3-biphosphoglycerate.
4. Electons are required by 1,3-biphosphoglycerate to an aldehyde called glyceraldehyde-3-phosphate or G3P and these electrons are donated by NADPH
5. Enzyme aldolase uses two molecules of G3P to produce 6 C sugar called fructose-1,6-biphosphate which is further converted to fructose-6-phosphate
6. Enzyme isomerase converts fructose-6-phosphate to glucose-1-phosphate