The correct answer is Metals.
Generally, the specific heat of metals is low. Very high specific heat exists in water.A physical feature of matter known as heat capacity or thermal capacity is the quantity of heat that must be applied to an object in order to cause a unit change in temperature. Heat capacity is measured in joules per kelvin (J/K), the SI unit. A broad property is heat capacity. Use the following equation to determine heat capacity: heat capacity = E / T, where E is the quantity of delivered heat energy and T is the change in temperature. The formula would be as follows, for instance, if it takes 2,000 Joules of energy to raise a block's temperature by 5 degrees Celsius: 2,000 Joules per °C is the heat capacity.
Learn more about heat capacity here :-
brainly.com/question/13499849
#SPJ4
Answer:
84.82N/C.
Explanation:
The x-components of the electric field cancel; therefore, we only care about the y-components.
The y-component of the differential electric field at the center is
.
Now, let us call
the charge per unit length, then we know that
;
therefore,


Integrating

![$E = \frac{k \lambda }{R}*[-cos(\pi )+cos(0) ]$](https://tex.z-dn.net/?f=%24E%20%3D%20%5Cfrac%7Bk%20%5Clambda%20%20%20%7D%7BR%7D%2A%5B-cos%28%5Cpi%20%29%2Bcos%280%29%20%5D%24)

Now, we know that


and the radius of the semicircle is

therefore,


Answer:
Since this is a linear equation
y = m x + b or
U = m F + b is a linear equation
when ΔF = (212 - 32) = 180
and ΔU = (60 - (-15)) = 75
m = 75 / 180 = 2.4 if converting F to U and a = .417
U = .417 F + b
If F = 32 then U = -15 and
-15 = .417 * 32 + b
b = -15 - 13.3 = -28.3 and our equation becomes
U = .417 F - 28.3
Check: let F = 212
U = .417 * 212 - 28.3 = 60 as it should