Angel Falls is 3,230 feet, which is the tallest waterfall in the world.
Hope this helps!
Happy studying,
~Mistermistyeyed.
Answer:
moving the circuit or the magnet gives the same result
Explanation:
The faraday effect establishes that the temporal variation of imaginative flow produces an electric potential
fem =
dfi / dt
the magnetic flux is
Ф = B. A = B A cos θ
suppose for simplicity that the angle is zero so cos 0 = 1
Φ = B A
By analyzing this expression, the change in magnetic flux can converge while keeping the magnetic field fixed and varying the electric field or keeping the electric field fixed and varying the magnetic field.
Consequently moving the circuit or the magnet gives the same result
1) The distance travelled by the electron is 
2) The time taken is 
Explanation:
1)
The electron in this problem is moving by uniformly accelerated motion (constant acceleration), so we can use the following suvat equation

where
v is the final velocity
u is the initial velocity
a is the acceleration
s is the distance travelled
For the electron in this problem,
is the initial velocity
v = 0 is the final velocity (it comes to a stop)
is the acceleration
Solving for s, we find the distance travelled:

2)
The total time taken for the electron in its motion can also be found by using another suvat equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
t is the time taken
Here we have

v = 0

And solving for t, we find the time taken:

Learn more about accelerated motion:
brainly.com/question/9527152
brainly.com/question/11181826
brainly.com/question/2506873
brainly.com/question/2562700
#LearnwithBrainly
Answer:
1.) answer B
2.) answer D
3.) answer A
Explanation:
In all of these problems, it is essential to draw pictures in order to understand which trigonometric function to use according to the angle that the vector in question forms with the component requested. For all of them try to picture a right angle triangle with the vector as the hypotenuse, and the components as the triangle's shorter sides. Please refer to the three pictures attached as image for this answer a,d notice that the vector quantity known for all cases is represented in red, and the component to find is represented in green.
Problem 1) : the vector velocity makes an angle of 24 degrees with the edge of the table. So picture that vector as the hypotenuse of a right angle triangle for which you know the value: 1.8 m/s
So in this case, where you know the angle, the hypotenuse, and need to find the adjacent side to the angle, you use the cosine function as follows:
requested component 
which we round to 1.6 to match answer C).
For problem 2.) wee need to find the component opposite to the given angle in the triangle for which we also know the hypotenuse. So we use the sine function as follows:
requested component 
which we round to 135.9 m to match answer D).
For problem 3.) we need to find the horizontal component to the acceleration which corresponds to the adjacent side to the known angle, so we use the cosine function as follows:
requested component 
which we round tp 7.7 to match answer A).