Answer:
tbh i like the first one its so simple but like so nice at the same time
Answer:
RADIUS
==================================
PROBLEM
Mary’s bicycle wheel has a circumference of 226.08 cm². What is its radius?
SOLUTION
We can solve this problem using the circumference formula in which π stands for ( 3.14 ), C stands for circumference itself and r stands for radius.
\bold{Formula \: || \: C = 2πr}Formula∣∣C=2πr
\tt{226.08 = 2(3.14) r}226.08=2(3.14)r
'Now to find the radius,Substitute 226.08 for c which is circumference in the formula.
\begin{gathered} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \tt{C = 2πr} \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \tt{226.08 = 2(3.14)\red{r}} \\ \\ \: \: \: \: \: \: \: \: \large \tt{ \frac{226.08}{6.28} = \cancel\frac{6.28 \red{r}}{6.28} } \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \boxed{\tt\green{C = 36}}\end{gathered}
C=2πr
226.08=2(3.14)r
6.28
226.08
=
6.28
6.28r
C=36
To check:
\begin{gathered} \small\begin{array}{|c|}\hline \bold{circumference }\\ \\ \tt{C = 2πr} \\ \tt{C = 2(3.14) (36\:cm) } \\ \tt{C = 2(113.04\:cm) } \\ \underline{\tt \green{C = 226.08\:cm }} \\ \hline \end{array} \end{gathered}
circumference
C=2πr
C=2(3.14)(36cm)
C=2(113.04cm)
C=226.08cm
FINAL ANSWER
If Mary's Bicycle has a circumference of 226.08 cm then the radius is 36.
\boxed{ \tt \red{r = 36}}
r=36
==================================
#CarryOnLearning
In euros Derek has twenty two dollars and eighty cents
If you add the whole number to the whole number part of the mixed number, and then add the fraction from the mixed number on to the end of that, you get a new mixed number which is your answer.