Answer: C) Increase the amplitude of the wavelenghth to increase the intensity.
Explanation:
Answer:
The skater has mechanical/gravitational potential energy at the two meter mark. The skater gets to two meters high on the other end of the ramp. In terms of the conservation of energy, the skater will never go higher than two meter on the other end of the the ramp because energy can be neither created nor destroyed.
Explanation:
I hoping it is right!!!∪∧∪ ∪ω∪
Answer:
699.67ft
Explanation:
We are given with,
- α = 1.2×10⁻⁵ / °C
- L₀ = 700 ft
- ΔT = -10°C − 30°C = -40°C
Now, We have to find ΔL:
- ΔL = (1.2×10⁻⁵ / °C) (700 ft) (-40°C)
- ΔL = −0.336
Rounded to two significant figures, the change in length is −0.33ft.
<u>Therefore, the final length is approximately 700 ft − 0.33 ft = 699.67ft</u>.
Ideal Gas Law is, pV = NkbT
<span>Therefore, p/t = Nkb/V which is
equal to the constant</span>
We need to convert the given temperature to Kelvin. We need to add 273 to
have the Kelvin of the temperature from Celsius.
T1= 20 + 273 = 293 K
T2= 120 + 273 = 393 K
With this we have the pressure ration of 393/293.
So,F120 = 1.34 APa
<span> </span>