Answer:
160.75 N
Explanation:
The downward velocity has no effect on the force situation, it is only changes in velocity (plus, of course, gravity, which is always there) that require a force. At constant velocity, the bottom spring s_3 is supporting its mass m_3 to balance gravity.
As the elevator slows, though, it also ends up slowing down the spring arrangement, too. However, because the stretching takes time, it means that some damped harmonic motion will be set up in the spring chain.
When the motion has finally damped out, the net force the bottom spring s3 exerts on m3 has two components--that of gravity and of the deceleration of the elevator:
F_3net = m3 * (g + a) = 10.5×(9.81+5.5)= 10.5×15.31= 160.75 N
Given required solution
M=10kg W=? W=Fd
v=5.0m/s F=mg
t=2.40s =10*10=100N
S=VT
=5m/s*2.4s
=12m
so W=12*100
W=1200J
Assuming motion is on a straight path, the result of two positive components of a vector would also be a positive value since both are having positive signs and directions. The direction would be the same with the motion as well. Hope this answers the question. Have a nice day.
The efficiency of the scissor is 200%.
<u>Explanation:</u>
Efficiency is defined as the ratio of output of any instrument or device or machine to the input supplied to it. So the greater the output the greater will be the efficiency of the device.
As here the work done by us on the system is said to be 10 J so this will be equal to the input work done on the system. And the work done by the system i.e., the scissor is 20 J, so this will be the output work.
So, the efficiency is the ratio of output to input as shown below.
Efficiency =
= 200
So, the efficiency of the scissor is 200%.
Answer:

Explanation:
At some distance from the Earth the force of attraction due to moon is balanced by the force due to Moon
so we will have

now we have


so we will have

Now by energy conservation


