Answer:
ωi = 15.4 rev/sec
Explanation:
Since the movement of the fan is rotating, we are thus dealing with Rotational motion. In rotational motion, for angular speed to take place also means angular acceleration is also occurring.
angular acceleration = α = (change in speed)/(change in time)
angular acceleration = α = Δw/Δt = (ω - ωi) /(t- t₀) ..........(equation 1)
α = (ω -ωi) /(t- 0)
α = (ω-ωi) /t
ωi = ω - αt ......................................(equation 2)
where ωi is the initial angular speed.
We replace the values for ω, t and α
ωi = 105 rad/sec - ( 4.4 rad/sec² )(1.85s) = 96.86 rad/s = 15.415747788 rev/sec
Answer:
The resistance is 0.124 ohm.
Explanation:
It is common for domestic electrical installations to use copper wire with a diameter of 2.05 mm. Determine the resistance of such a wire with a length of 24.0 m.
diameter, d = 2.05 mm
radius, r = 1.025 mm
Length, L = 24 m
resistivity of copper = 1.7 x 10^-8 ohm m
Let the resistance is R.

Answer:
Push - The most common form of force is a push through physical contact (like a lawnmower or shopping cart)
Pull - You can apply a force by directly pulling on an object (like pulling a wagon)
Explanation:
First, calculate how long the ball is in midair. This will depend only on the vertical displacement; once the ball hits the ground, projectile motion is over. Since the ball is thrown horizontally, it originally has no vertical speed.
t = time vi = initial vertical speed = 0m/s g = gravity = -9.8m/s^2 y = vertical displacement = -45m
y = .5gt^2 [Basically, in this equation we see how long it takes the ball to fall 45m] -45m = .5 (-9.8m/s^2) * t^2 t = 3.03 s
Now we know that the ball is midair for 3.03s. Since horizontal speed is constant we can simply use:
x = horizontal displacement v = horizontal speed = 25m/s t = time = 3.03s
x = v*t x = 25m/s * 3.03s = 75.76 m Thus, the ball goes about 75 or 76 m from the base of the cliff.
Answer:
Explanation:
This is a simple gravitational force problem using the equation:
where F is the gravitational force, G is the universal gravitational constant, the m's are the masses of the2 objects, and r is the distance between the centers of the masses. I am going to state G to 3 sig fig's so that is the number of sig fig's we will have in our answer. If we are solving for the gravitational force, we can fill in everything else where it goes. Keep in mind that I am NOT rounding until the very end, even when I show some simplification before the final answer.
Filling in:
I'm going to do the math on the top and then on the bottom and divide at the end.
and now when I divide I will express my answer to the correct number of sig dig's:
6.45 × 10¹⁶ N