Answer:
à in unit vector notation = 12.26485i + 7.54539j
B in unit vector notation = 16.3516i + 3.11529j
Explanation:
The detailed steps and calculation is shown in the attachment.
Answer:
Explanation:
Using the pythagoras theorem, the displacement is expressed as;
d² = x²+y²
y = 36m (north)
x = 20m east
Substitute;
d² = 36²+20²
d² = 1296+400
d² = 1696
d = √1696
d = 41.18m
For the direction;
theta = tan^-1(y/x)
theta = tan^-1(36/20)
theta = tan^-1(1.8)
theta = 60.95°
Hence the magnitude is 41.18m and the direction is 60.95°
Answer:
As you know, the denser objects have more weight per unit of volume, this will mean that the force that pulls down these objects is a bit larger.
This will mean that the denser objects will always go to the bottom.
This clearly implies that the red liquid, the one with one of the smaller densities, can not be at the bottom.
There are some cases where a liquid with a small density may become a lot denser as the temperature or pressure changes, and in a case like that, we could see the red liquid at the bottom, but for this case, there is no mention of changes in the temperature nor in the pressure, so this can be discarded.
The only thing that makes sense is that the red part at the bottom is the base of the tube, and has nothing to do with the red liquid.
Answer: a network of several radio telescopes wired together
Explanation:
A radio interferometer combines signals of several radio telescopes which are used in astronomical observations simultaneously to simulate a discretely-sampled single telescope of very large aperture
Interferometer, an instrument that uses the interference patterns formed by waves to measure certain characteristics of the waves themselves or of materials that reflect, refract, or transmit the waves. Interferometers can also be used to make precise measurements of distance.
Refer to the diagram shown below.
W₁ = (4 kg)*(9.8 m/s²) = 39.2 N
W₂ = (1 kg)*(9.8 m/s²) = 9.8 N
The normal reaction on the 4-kg mass is
N = (39.2 N)*cos(25°) = 35.5273 N
The force acting down the inclined plane due to the weight is
F = (39.2 N)*sin(25°) = 16.5666 N
The net force that accelerates the 4-kg mass at a m/²s down the plane is
F - W₂ = (4 kg)*(a m/s²)
4a = 16.5666 - 9.8
a = 1.6917 m/s²
Answer: 1.69 m/s² (nearest hundredth)