Answer:
B = 6.18 10⁻⁶ T
the magnetic field is in the negative direction of the y axis
Explanation:
The magnetic force is given by
F = q v x B
as in the exercise indicate that the velocities perpendicular to the magnetic field,
F = q v B
Newton's second law is
F = m a
let's substitute
q v B = m a
B = m a / q v
let's calculate
B = 9.1 10⁻³¹ 2.50 10¹³ / (1.6 10⁻¹⁹ 2.30 10⁷)
B = 6.18 10⁻⁶ T
The direction of the field can be obtained with the right hand rule, where the thumb points in the direction of the velocity, the fingers extended in the direction of the magnetic field and the palm in the direction of the force for a positive charge.
In the exercise indicate that the velocity is the z axis
the acceleration and therefore the force in the x axis
therefore the magnetic field is in the negative direction of the y axis
It takes him
t = 16 miles / 156 mph = 0.1 hours
Its like newtons 3rd law that once in motion a outer force has to stop it
Answer:
When a positive charged object is placed near a conductor electrons are attracted the the object. ... When electric voltage is applied, an electric field within the metal triggers the movement of the electrons, making them shift from one end to another end of the conductor. Electrons will move toward the positive side. As you know, electrons are always moving. They spin very quickly around the nucleus of an atom. As the electrons zip around, they can move in any direction, as long as they stay in their shell.