Answer:
m = 28.7[kg]
Explanation:
To solve this problem we must use the definition of kinetic energy, which can be calculated by means of the following equation.

where:
Ek = kinetic energy = 1800 [J]
m = mass [kg]
v = 11.2 [m/s]
![1800=\frac{1}{2}*m*(11.2)^{2}\\m = 28.7[kg]](https://tex.z-dn.net/?f=1800%3D%5Cfrac%7B1%7D%7B2%7D%2Am%2A%2811.2%29%5E%7B2%7D%5C%5Cm%20%3D%2028.7%5Bkg%5D)
Answer:
3.64×10⁸ m
3.34×10⁻³ m/s²
Explanation:
Let's define some variables:
M₁ = mass of the Earth
r₁ = r = distance from the Earth's center
M₂ = mass of the moon
r₂ = d − r = distance from the moon's center
d = distance between the Earth and the moon
When the gravitational fields become equal:
GM₁m / r₁² = GM₂m / r₂²
M₁ / r₁² = M₂ / r₂²
M₁ / r² = M₂ / (d − r)²
M₁ / r² = M₂ / (d² − 2dr + r²)
M₁ (d² − 2dr + r²) = M₂ r²
M₁d² − 2dM₁ r + M₁ r² = M₂ r²
M₁d² − 2dM₁ r + (M₁ − M₂) r² = 0
d² − 2d r + (1 − M₂/M₁) r² = 0
Solving with quadratic formula:
r = [ 2d ± √(4d² − 4 (1 − M₂/M₁) d²) ] / 2 (1 − M₂/M₁)
r = [ 2d ± 2d√(1 − (1 − M₂/M₁)) ] / 2 (1 − M₂/M₁)
r = [ 2d ± 2d√(1 − 1 + M₂/M₁) ] / 2 (1 − M₂/M₁)
r = [ 2d ± 2d√(M₂/M₁) ] / 2 (1 − M₂/M₁)
When we plug in the values, we get:
r = 3.64×10⁸ m
If the moon wasn't there, the acceleration due to Earth's gravity would be:
g = GM / r²
g = (6.672×10⁻¹¹ N m²/kg²) (5.98×10²⁴ kg) / (3.64×10⁸ m)²
g = 3.34×10⁻³ m/s²
<h2>
Answer:5

,133.6

,51.18

</h2>
Explanation:
Let
,
be the horizontal and vertical components of velocity.
Question a:
Horizontal component of velocity is the ratio of range and time of flight.
So,horizontal component of velocity is 
So,
Question b:
Time of flight=
So,
Maximum height is given by 
So,maximum height is 
Question c:
The vertical velocity is already calculated in Question b.

Yes it can because it had lots of force
Answer: softer
The sound waves become weaker, so to an observer this wave is lighter sound.