Slope intercept form:
y=mx+b
Where:
m= slope
b= y-intercept
For: y=1/2x-2
slope = 1/2
b= -2
To graph it we have to look at the y-intercept.(-2) It means that the line crosses the y axis at y=-2.
looking at the slope, we know that slope = rise (y) / run (x). 1/2
For every 2 units along the x-axis (to the right) the line goes up by 1 unit.
Since inequality has a y> the line is not included in the solution, so it's a dashed line, where the solution is above the line.
Answer:

Step-by-step explanation:
To solve for the inverse, we need to switch the variables and solve for y.
Note that f(x) is the same as y or in other words, the output.
f(x) = 3x + 5
y = 3x + 5
~Switch variables
x = 3y + 5
~Subtract 5 to both sides
x - 5 = 3y
~Divide 3 to everything
1/3x - 5/3 = y
~Flip
y = 1/3x - 5/3
Best of Luck!
Step-by-step explanation:
a. (3 - 2/3) ÷ (4/3 x 7)
= [(3 x 3) / (1 x 3) - 2/3] ÷ 28/3
= (9/3 - 2/3) ÷ 28/3
= 7/3 x 3/28
= 21/84
= (21 x 1) / (21 x 4)
= 1/4
b. 2/3 ÷ 5/6 - 2/5
= 2/3 x 6/5 - 2/5
= 12/15 - 2/5
= (3 x 4) / (3 x 5) - 2/5
= 4/5 - 2/5
= 2/5
c. (- 3/4 + 1/2) ÷ (2/5 - 5/2)
= [- 3/4 + (1 x 12) / (2 x 2)] ÷ [(2 x 2) / (5 x 2) - (5 x 5) / (2 x 5)]
= (- 3/4 + 12/4) ÷ (4/10 - 25/10)
= 9/4 ÷ (- 21/10)
= 9/4 x - 10/21
= - 90/84
= (6 x - 15) / (6 x 14)
= - 15/14.
If you have any doubt, then you can ask me in the comments.
Answer:
77 goles
Step-by-step explanation:
Un futbolista ha marcado 2/9 del número de goles marcados por su equipo.
Otro anotó una cuarta parte del resto.
El resto = 1 - 2/9
= 7/9
De ahí que otro futbolista anotó
= 1/4 de 7/9
= 7/36
Si los otros jugadores han marcado 45 goles
Tenemos que averiguar la fracción de goles que marcó el otro jugador
Deje que el número total de goles marcados por el equipo durante la temporada = 1
Por lo tanto:
1 - (2/9 + 7/36)
1 - (8 + 7/36)
1 - 15/36
1 - 5/12
= 7/12
¿Cuántos goles marcó el equipo a lo largo de la temporada?
El número total de goles que marcó ese equipo se calcula como:
7/12 × x = 45
Donde x = número total de goles
7x / 12 = 45
Cruz multiplicar
7x = 45 × 12
x = 45 × 12/7
x = 77,142857143
Aproximadamente = 77 goles