1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rainbow [258]
3 years ago
5

Why would physics be used to study the movement of ocean waves?

Physics
1 answer:
Lunna [17]3 years ago
5 0
I think it’s c because the other ones are just options not facts
You might be interested in
The largest watermelon ever grown had a mass of 118 kg. Suppose this watermelon were exhibited on a platform 5.00 m above the gr
WINSTONCH [101]

Answer: height = 3.98m

Explanation: by placing the watermelon at a height above the ground, it has a potential energy of the formulae

p = mgh

p = potential energy = 4.61kJ = 4610J

m = mass of watermelon = 118 kg

g = acceleration due gravity = 9.8 m/s²

4610 = 118 * 9.8 * h

h = 4610/ 118 * 9.8

h = 4610/ 1156.4

h = 3.98m

6 0
3 years ago
A pulley is most closely related to which simple machine?
MrRissso [65]

Answer: wheel and axle

Explanation:

5 0
3 years ago
Read 2 more answers
Plz help >:
svlad2 [7]

Answer:

10m

Explanation:

The object distance and image distance is the same from the mirror. so the image is 5m behind the mirror.

5+5=10

5 0
3 years ago
A referee will toss up the ball between to opponents.what is this called
OlgaM077 [116]
This happens in basketball. It is known as "jump ball".
5 0
3 years ago
1) draw a simple circuit with a voltage source and four resistors wired in series
Norma-Jean [14]

Answer:

1)

In this circuit (see attachment #1), we have:

- A voltage source: in this case, we choose a battery. A voltage source is a device producing an electromotive force (in a battery, this is done by means of a chemical reaction), which is responsible for "pushing" the electrons along the circuit and creating a current. The electromotive force (emf) of the battery is also called voltage, and it is indicated with the letter V.

- Four resistors: a resistor is a device which opposes to the flow of current. The property that describes by "how much" the resistor "opposes" to the flow of current is called "resistance", and it is indicated with the letter R.

- In this circuit, the 4 resistors are in series. Resistors are said to be in series when they are connected along the same branch of the circuit, so that the same current flow across each of them.

- For resistors in series, the equivalent resistance of the circuit is given by the sum of the individual resistances:

R=R_1+R_2+...+R_n

2)

In this circuit (see attachment #2), we have:

- A voltage source: as before, we have chosen a battery, providing an electromotive  force to the circuit

- Three resistors wired in parallel. Resistors are said to be connected in parallel when they are connected along different branches, but with their terminals connected to the same point, so that each of them has the same potential difference across it.

- For resistors in parallel, the equivalent resistance of the circuit is calculated using the formula:

\frac{1}{R}=\frac{1}{R_1}+\frac{1}{R_2}+...+\frac{1}{R_n}

3)

In this circuit (see attachment #3), we have:

- A voltage source (again, we have choosen a battery)

- Three resistors, of which:

-- 2 of them are connected in parallel with each other

-- the 3rd one it is in series with the first two

If we call R_1,R_2 the resistances of the first 2 resistors in parallel, their equivalent resistance is:

\frac{1}{R_{12}}=\frac{1}{R_1}+\frac{1}{R_2}\\\rightarrow R_{12}=\frac{R_1 R_2}{R_1+R_2}

Then, these two resistors are connected in series with resistor R_3; and so, the total resistance of this circuit will be:

R=R_{12}+R_3=\frac{R_1R_2}{R_1+R_2}+R_3=\frac{R_1R_2+R_3(R_1+R_2)}{R_1+R_2}

4)

In this circuit (see attachment #4), we have:

- A voltage source (again, a battery)

- We have 6 resistors, which are arranged as follows:

-- Two branches each containing 3 resistors

-- The two branches are in parallel with each other

So, the total resistance of the two branches are:

R_{123}=R_1+R_2+R_3

R_{456}=R_4+R_5+R_6

And since the two branches are in parallel, their total resistance will be:

\frac{1}{R}=\frac{1}{R_{123}}+\frac{1}{R_{456}}\\\rightarrow R=\frac{R_{123}R_{456}}{R_{123}+R_{456}}=\frac{(R_1+R_2+R_3)(R_4+R_5+R_6)}{R_1+R_2+R_3+R_4+R_5+R_6}

4 0
3 years ago
Other questions:
  • A student pulls a box across a horizontal floor at a constant speed of 4.0 meters per second by exerting a constant horizontal f
    10·2 answers
  • When you spill a few drops of soup or milk on a pale-blue Gas game when cooking, the color of the flame changes to a mixture of
    14·1 answer
  • In most cases, what happens to a liquid when it cools?
    11·1 answer
  • Which is NOT a property of gold? Select one: a. rare b. malleable c. tarnishes d. corrosion resistant
    12·2 answers
  • You can use one or more of your five senses to make ______ during an inquiry activity
    14·1 answer
  • A machine is brought in to accomplish a task which requires 100 ft.-lbs. of work. Which statements are correct:
    7·1 answer
  • State keplers law........​
    8·1 answer
  • A sled is pulled at a constant velocity across a horizontal snow surface. If a force of 100 N is being applied to the sled rope
    15·1 answer
  • television set changes electrical energy to sound and light energy. In this process, some energy is *
    6·1 answer
  • 18. Reference samples come from a source that is O known O scientific method O physical evidence O individual characteristics​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!