the engine won't start or it sputters when it should be running perfectly. if the gasoline is old and stale, it will have lost a portion of its volatility. the lighter components of the gasoline (remember, gasoline is a mixture of different hydrocarbons) have probably evaporated off or disappeared.
The maximum force that the tires can exert on the road before slipping is 16200 N.
From the information in the question;
The coefficient of static friction = 0.9
The mass of the car = 1800 kg
Using the formula;
μ = F/R
μ = coefficient of static friction
F = force on the tires
R = the reaction force
But recall that the reaction is equal in magnitude to the weight of the car.
W=R
Hence; R = 1800 kg × 10 ms-2 = 18000 N
Making F the subject of the formula;
F = μR
Substituting values;
F = 18000 N × 0.9
F = 16200 N
Hence, the maximum force that the tires can exert on the road before slipping is 16200 N.
Learn more: brainly.com/question/18754989
Acceleration= change in speed/ change in time
30-10= 20 (change in speed)
Time= 10 seconds
20/10= 2
Acceleration= 2 m/s^2
Hope this helps! :)
The law of universal gravitation says that one object attracts every other object using a proportional force to the mass of the object.
Answer:
4 Ohms
Explanation
(This is seriously not as hard as it looks :)
You only need two types of calculations:
- replace two resistances, say, R1 and R2, connected in a series by a single one R. In this case the new R is a sum of the two:

- replace two resistances that are connected in parallel. In that case:

I am attaching a drawing showing the process of stepwise replacement of two resistances at a time (am using rectangles to represent a resistance). The left-most image shows the starting point, just a little bit "warped" to see it better. The two resistances (6 Ohm next to each other) are in parallel and are replaced by a single resistance (3 Ohm, see formula above) in the top middle image. Next, the two resistances (9 and 3 Ohm) are nicely in series, so they can be replaced by their sum, which is what happened going to the top right image. Finally we have two resistances in parallel and they can be replaced by a single, final, resistance as shown in the bottom right image. That (4 Ohms) is the <em>equivalent resistance</em> of the original circuit.
Using these two transformations you will be able to solve step by step any problem like this, no matter how complex.