the second option is your answer to what a liquid is
Large amounts of water do have a big impact on the weather: indeed, it takes less energy to warm/cool land than water.
Therefore, places near large amounts of water tend to have smaller differences in temperature between summer and winter than places far from waters.
Hence, during winter in Puerto Rico, alongside the coast, the temperature will be higher than in the innermost parts of the island.
Answer:
λ = 1.4 × 10^(-7) m
Explanation:
We are given;
distance of eye piece from the source;D = 1.5 m
distance between the virtual sources;d = 7.5 × 10^(-4) m
To find the wavelength, we will use the formula for fringe width;
X = λD/d
Where X is fringe width, λ is wavelength, while d and D remain as before.
Now, fringe width = eye-piece distance moved transversely/number of fringes
Eye piece distance moved transversely = 1.88 cm = 1.88 × 10^(-2) m
Thus,
Fringe width = (1.88 × 10^(-2))/10 = 1.88 × 10^(-3) m
Thus;
1.88 × 10^(-3) = λ(1.5)/(7.5 × 10^(-4))
λ = [1.88 × 10^(-3) × (7.5 × 10^(-4))]/1.5
λ = 1.4 × 10^(-7) m
Answer:
7.9
Explanation:
When we put the metal piece in the liquid (which is in the graduated cylinder), how much it goes up is equal to the volume of the piece we inserted.
So now we know that the volume of that piece of unknown metal is 7mL (which is the same as 7
).
Density is
.
So the density of that piece of metal is 
Which leaves us with a final density of 7.9