<span>Hydrogen bonds are
approximately 5% of the bond strength of covalent bonds, for example (C-C or C-H
bonds).
Hydrogen bonds strength in water is approximately 20
kJ/mol, strenght of carbon-carbon bond is approximately 350 kJ/mol
and strengh of carbon-hydrogen bond is approximately 340 kJ/mol.
20 kJ/350 kJ = 0,057 = 5,7 %.</span>
<h3>
Answer:</h3>
8CO₂
<h3>
Explanation:</h3>
We are given;
- Butane is a hydrocarbon in the homologous series known as alkane.
We are required to determine the other product produced in the combustion of butane apart from water.
- We know that the complete combustion of alkane yields carbon dioxide and water.
- Therefore, combustion of butane will yield carbon dioxide and water.
- The balanced equation for the complete combustion of butane will be;
2C₄H₁₀ + 13O₂ → 8CO₂ + 10H₂O
Answer:
d.) It is a binary molecular compound.
Explanation:
The compound in question has a formula
. The compound is not acidic in nature and the element 'M' is not a metal. This shows that the compound does not contain any metal. Based on the definition of a binary molecular compound as a compound comprising elements that are not metals. Therefore, the compound is obviously a binary molecular compound.
From the electric generator to electric outlets in homes
Answer:
2.94 x
Explanation:
First we need to find out how many moles of ammonia there are, using the formula: Mass = mr x moles.
We know the mass is 83.1g, now we need to find the mR of ammonia - NH3.
N = 14, H = 1, so 14 + (3x1) = an mr of 17.
Moles = mass/ mr = 83.1/17 = 4.8882
Now we can multiply the moles by avogadro's constant to find the number of molecules:
4.8882 x (6.02 x
) = 2.94 x
molecules of ammonia