Answer:
1.7 × 10 ^42
Explanation:
Using Nernst equation
E°cell = RT/nF Inq
at equilibrium
Q=K
E°cell = 0.0257 /n Ink= 0.0592/n log K
Fe2+(aq)+2e−→Fe(s) E∘= −0.45 V
Ag+aq)+e−→Ag(s) E∘= 0.80 V
Fe(s)+2Ag+(aq)→Fe2+(aq)+2Ag(s)
balance the reaction
Fe → Fe²⁺ + 2e⁻ reversing for oxidation E° = 0.45 v
2 Ag⁺ +2e⁻ → 2Ag
n = 2 moles and K = equilibrium constant
E° cell = 0.80 + 0.45 = 1.25 V
E° cell = (0.0592 / n) log K
substitute the value into the equations and solve for K
(1.25 × 2) / 0.0592 = log K
42.23 = log K
k = 10^ 42.23
K = 1.7 × 10 ^42
Explanation:
The given data is as follows.
Concentration = 0.1 
= 0.1 \frac{mol dm^{3}}{dm^{3}} \frac{10^{3}}{dm^{3}} \times \frac{6.022 \times 10^{23}}{1 mol} ions
= 
T =
= (30 + 273) K = 303 K
Formula for electric double layer thickness (
) is as follows.
= 
where,
= concentration = 
Hence, putting the given values into the above equation as follows.
=
=
=
m
or, =
= 1 nm (approx)
Also, it is known that
= 
Hence, we can conclude that addition of 0.1
of KCl in 0.1
of NaBr "
" will decrease but not significantly.
It would be MnSO4
The (II) lets you know it’s the form with a 2+ charge and Sulfate has a 2- charge
These will cancel out making it plain MnSO4
If it was manganese (iii) sulfide the answer would be Mn2(SO4)3
1 is true,
<span>2 is definitely false </span>
<span>3 is also completely false because </span>
<span>4 is true. </span>
<span>So 1&4 </span>