Across a period I.E increases progressively from left to right
Explanation:
The trend of the first ionization energy is such that across a period I.E increases from left to right due to the decreasing atomic radii caused by the increasing nuclear charge. This not compensated for by successive electronic shells.
- Ionization energy is a measure of the readiness of an atom to lose an electron.
- The lower the value, the easier it is for an atom to lose an electron.
- Elements in group I tend to lose their electrons more readily whereas the halogens hold most tightly to them.
- The first ionization energy is the energy needed to remove the most loosely bonded electron of an atom in the gaseous phase.
Learn more:
Ionization energy brainly.com/question/6324347
#learnwithBrainly
Answer:
The molecules inside the ice pack are frozen therefore they are stuck in place. The molecules inside an insulated cup aren't frozen but still stuck inside of their container so that they can not fly out.
Explanation:
Answer:
b) C = 0.50 J/(g°C)
Explanation:
∴ Q = 50 J
∴ m = 10.0 g
∴ ΔT = 35 - 25 = 10 °C
specific heat (C) :
⇒ C = Q / mΔT
⇒ C = 50 J / (10.0 g)(10 °C)
⇒ C = 0.50 J/(g°C)
Visual representation of covalent bonding indicating the valence shell electrons in the molecule, lines represents the shared pair of electron and pair of electrons that are not involved in bonding are represented as dots(lone pairs) are known as Lewis structures.
Compound formation takes place in order to complete the octet of each element that is according to octet rule, each atom forms bond with other atom in order to complete their octet that is to get eight electrons in its valence shell and attain stability.
An organic compound of the form
is known as ketene.
The given ketene is
.
The number of valence electron of:



The number of valence electrons in
= 
2 electrons are involved in each single bond between carbon and hydrogen and 4 electrons are involved in each double bond formed between carbon-carbon and carbon-oxygen. Hence, the total number of electrons involved in bond formation are 12 and rest 2 pair of electrons are present on oxygen as lone pair of electrons.
Therefore, the attached image is the Lewis structure of
.