Answer:
The K.E is maximum when the child is at the vertical position and the P.E is maximum at the extreme deviated position from the vertical.
Explanation:
- A child is swinging on swing up and down has both kinetic and potential energy.
- The total mechanical energy of the system is conserved throughout the system. At any instant the total mechanical energy is given by,
E = K.E + P.E
- The K.E is maximum when the child is at the vertical position.
- The P.E is maximum at the extreme deviated position from the vertical.
- And when K.E is maximum P.E becomes minimum and vice versa as per the law of conservation of energy.
Answer:
3
Explanation:
because I put that it's was right
Answer:
D = 43 m
Explanation:
given,
initial velocity = 18 m/s
angle θ = 60°
total horizontal distance covered by the shell is

applying conservation of momentum in horizontal direction
m v₀ cos θ = m₁v₁ + m₂ v₂
m v₀ cos θ = 0.5 m v₂
v₂ = 2 v₀ cos θ.
distance covered by the shell from point of explosion
R' = v t
= 
=
= 
= R
total distance traveled by the shell is
D = 
= 1.5 R
= 
D = 
= 42.9 ≅ 43 m
D = 43 m
Answer:
The electron tends to go to the region of 4. higher electric potential.
Explanation:
When a charged particle is immersed in an electric field, it experiences a force given by

where
q is the charge of the particle
E is the electric field
The direction of the force depends on the sign of the charge. In particular:
- The force and the electric field have the same direction if the charge is positive
- The force and the electric field have opposite directions if the charge is negative
Therefore, an electron (negative charge) moves in the direction opposite to the electric field lines.
However, electric field lines go from points at higher potential to points at lower potential: so, electrons move from regions at lower potential to regions of higher potential.
Therefore, the correct answer is
The electron tends to go to the region of 4. higher electric potential.
Answer:

Explanation:
ΣF=ma
The two forces at play are the force applied and the force due to friction. As they are opposing forces set the direction being pushed as the positive in the x direction. the equation you come out with is 60 - 15=(15)A (we know mass to be 15kg). Solve for 3 m/s^2.