Answer:
Explanation:
Given
length of wire 
change in length 
mass of wire 
Young's modulus for silver 
load on wire 

change in length is given by

Where A=area of cross-section




also wire is the shape of cylinder so cross-section is given by





Answer:
the cannonball’s velocity parallel to the ground is 86.6m/S
Explanation:
Hello! To solve this problem remember that in a parabolic movement the horizontal component X of the velocity of the cannonball is constant while the vertical one varies with constant acceleration.
For this case we must draw the velocity triangle and find the component in X(see atached image).
V= Initial velocity=100M/S

V= Initial velocity=100M/S
Vx=cannonball’s velocity parallel to the ground
Solving for Vx
Vx=Vcos30
Vx=(100m/S)(cos30)=86.6m/s
the cannonball’s velocity parallel to the ground is 86.6m/S
Answer:
(a) -472.305 J
(b) 1 m
Explanation:
(a)
Change in mechanical energy equals change in kinetic energy
Kinetic energy is given by
Initial kinetic energy is 
Since he finally comes to rest, final kinetic energy is zero because the final velocity is zero
Change in kinetic energy is given by final kinetic energy- initial kinetic energy hence
0-472.305 J=-472.305 J
(b)
From fundamental kinematic equation

Where v and u are final and initial velocities respectively, a is acceleration, s is distance
Making s the subject we obtain
but a=\mu g hence

Answer: This is because water has a higher Specific Heat Capacity than air.
Explanation:
The specific heat capacity of an object measures how much heat will be required to change its temperature.
Water has a higher specific heat capacity than air, so the temperature of the water will remain fairly constant even though the air surrounding the water is experience temperature changes.
Since air has a lower Specific Heat Capacity than water, heat from the sun will readily heat it up in comparison to water.