If the separation distance is doubled, then the electric field decreases by a factor of 4.
<h3>What is the electric field strength?</h3>
We know that the electric field strength is known to depend on the magnitude of the charge and the distance of separation. We know that the electric field refers to the region in which the influence of a charge is felt. Recall that a charge is a specie that is positively or negatively charged. The charge on a specie must always be shown by its sign.
We know that the electric field is the region in space where the influence of a charge can be felt. If a charge is placed in the vicinity of another charge, the second charge would experience a force due to the presence of the first charge. This is because the second charge was brought into the electric field of the first charge.
Thus we know that;
E = Kq/r^2
Where;
E = electric field strength
q = magnitude of charge
r = distance of separation
Now;
E = 9.0* 10^9 * 3.052 * 10^-6/(8.22 * 10^-2)^2
E = 4 N/C
Given that the electric filed strength is inversely proportional to the distance of separation, when the distance between the charges is doubled, the electric field decreases by a factor of 4.
Learn more about electric field strength:brainly.com/question/15170044?
#SPJ1
Answer:
The correct option is;
B. Designing experiments to replicate the conditions in which life may have first evolved on Earth
Explanation:
The proof to the hypothesis that life originated from inanimate inorganic, or non-living molecules which is an explanation for the origin of life on Earth was provided by an experiment designed and performed in 1953 by Stanley L. Miller and Harold C. Urey which consisted of using chemicals proposed in the hypothesis and combining them through a specific design process to replicate expected atmospheric condition before the life began on Earth.
With such successful design of experiments to replicate the conditions in which life may have first evolved on Earth, it was possible to better explain the hypothesis that life originated from inorganic molecule.
The SI unit for acceleration is m/s2 ( D)
Answer:
1.43 s
Explanation:
The time it takes for the container to reach the ground is determined only by the vertical motion of the container, which is a free-fall motion, so a uniformly accelerated motion with a constant acceleration of g=9.8 m/s^2 towards the ground.
The vertical distance covered by an object in free fall is given by

where
u = 0 is the initial vertical speed
t is the time
a= g = 9.8 m/s^2 is the acceleration
since u=0, it can be rewritten as

And substituting S=10.0 m, we can solve for t, to find the duration of the fall:
