<span>The answer is Mathias Schleiden and <span><span>Theodor Schwann</span></span></span>
Answer:
The latent heat of vaporization of water is 2.4 kJ/g
Explanation:
The given readings are;
The first (mass) balance reading (of the water) in grams, m₁ = 581 g
The second (mass) balance reading (of the water) in grams, m₂ = 526 g
The first joulemeter reading in kilojoules (kJ), Q₁ = 195 kJ
The second joulemeter reading in kilojoules (kJ), Q₂ = 327 kJ
The latent heat of vaporization = The heat required to evaporate a given mass water at constant temperature
Based on the measurements, we have;
The latent heat of vaporization = ΔQ/Δm
∴ The latent heat of vaporization of water = (327 kJ - 195 kJ)/(581 g - 526 g) = 2.4 kJ/g
The latent heat of vaporization of water = 2.4 kJ/g
Write out what you have which is:
initial velocity
final velocity
Y distance
degree
You do not have :
a
X distance
t
from what you have you can plug into your formulas to get time.
Answer:
1:2
Explanation:
It is given that,
Initial RMS AC voltage is 100 V and final RMS AC voltage is 200 V.
We need to find the ratio of the number of turns in the primary to the secondary for step up transformer.
For a transformer, 
So,

So, the ratio of the number of turns in the primary to the secondary is 1:2.
Answer:
Find answers below.
Explanation:
Given the following data;
Voltage = 220V
Current = 15 A
a. To find the power;
Power = current * voltage
Power = 15 * 220
Power = 3300 Watts
b. To find the energy;
Time = 8 hours = 60 * 60 * 8 = 28800 seconds
Energy = power * time
Energy = 3300 * 8
Energy = 26400
Energy = 26.4 Kwh
c. Cost = 13 cents
Cost = 13 * 31 * 26.4
Cost = 106392 cents