Answer:
x = A sin ω t describes the displacement of the particle
v = A ω cos ω t
a = -A ω^2 sin ω t
a (max) = -A ω^2 is the max acceleration (- can be ignored here)
ω = (K/ m)^1/2 for SHM
F = - K x^2 restoring force of spring
K = 4.34 / .0745^2 = 782 N / m
ω = (782 / .297)^1/2 = 51.3 / sec
a (max) = .0745 * 782 / .297 = 196 m / s^2
The first three choices: a, b and c can be considered reconstruction except the last one which is letter d. I'm not really certain what reconstruction is, but judging from the patterns of the first three choices, reconstruction could mean that an inference is made after a part of an event has proved that event to be true.
Answer:
280 N
Explanation:
Applying Newton's third second law of motion,
F = m(v-u)/t................... Equation 1
Where F = Magnitude of the average force on the ball during contact, v = final velocity of the ball, u = initial velocity of the ball, t = time of contact of the ball and the wall.
Note: Let the direction of the initial velocity of the ball be positive
Given: m = 4 kg, u = 3.0 m/s, v = -4.0 m/s (bounce off), t = 0.1 s
Substitute into equation 1
F = 4(-4-3)/0.1
F = 4(-7)/0.1
F = -28/0.1
F = -280 N.
Note: The negative sign tells that the force on the ball act in opposite direction to the initial motion of the ball
a substance's density is the same at a certain pressure and temperature, and the density of one substance is usually different than another substance.
Answer:
W=315 x 10⁵ J
Explanation:
Given that
F= 2.5 x 10⁵ N
d= 90 m
K.E.=5.4 x 10⁷ J
We know that work done by all force is equal to the change in kinetic energy
Lets take work done by catapult is W
W + F.d= K.E.
W= 5.4 x 10⁷ - 2.5 x 10⁵ x 90 J
W= (540 - 25 x 9) 10⁵ J
W=315 x 10⁵ J