Answer:
3.68 grams.
Explanation:
First we <u>convert 9.5 g of NaCl into moles of NaCl</u>, using its<em> molar mass</em>:
9.5 g ÷ 58.44 g/mol = 0.16 mol NaCl
In<em> 0.16 moles of NaCl there are 0.16 moles of sodium </em>as well.
We now <u>convert 0.16 moles of sodium into grams</u>, using <em>sodium's molar mass</em>:
0.16 mol * 23 g/mol = 3.68 g
Mols CuSO4 = M x L = 1.50 x 0.150 = 0.225
<span>mols KOH = 3.00 x 0.150 = 0.450 </span>
<span>specific heat solns = specific heat H2O = 4.18 J/K*C </span>
<span>CuSO4 + 2KOH = Cu(OH)2 + 2H2O </span>
<span>q = mass solutions x specific heat solns x (Tfinal-Tinitial) + Ccal*deltat T </span>
<span>q = 300g x 4.18 x (31.3-25.2) + 24.2*(31.3-25.2) </span>
<span>dHrxn in J/mol= q/0.225 mol CuSO4 </span>
<span>Then convert to kJ/mol
</span>
The answer is: A
C-14 is not stable and this is the reason why it goes through radioactive decay.
Effect of Hybridisation on Single, Double and Triple Bond Lengths of Carbon. Since the sp hybrid orbital contains more s-character (50%), it is closer to its nucleus; therefore, it forms shorter bonds. Because of the same reason sp2 hybrid orbital forms shorter bonds than sp3 hybrid orbitals.