Answer:
If 51.8 of Pb is reacting, it will require 4.00 g of O2
If 51.8 g of PbO is formed, it will require 3.47 g of O2.
Explanation:
Equation of the reaction:
2 Pb + O2 → 2 PbO
From the equation of reaction, 2 moles of lead metal, Pb, reacts with 1 mole of oxygen gas, O2, to produce 2 moles of lead (ii) oxide, PbO
Molar mass of Pb = 207 g
Molar mass of O2 = 32 g
Molar mass of PbO = 207 + 32 = 239 g
Therefore 2 × 207 g of Pb reacts with 32 g of O2 to produce 2 × 239 g of PbO
= 414 g of Pb reacts with 32 g of O2 to produce 478 g of PbO
Therefore, formation of 51.8 g of PbO will require (32/478) × 51.8 of O2 = 3.47 g of O2.
If 51.8 of Pb is reacting, it will require (32/414) × 51.8 g of O2 = 4.00 g of O2
Answer:
C. sorry if I'm wrong ...................
Answer:
0.185M sulfuric acid
Explanation:
Based on the reaction:
H₂SO₄ + 2KOH → K₂SO₄ + 2H₂O
<em>1 mole of sulfuric acid reacts with 2 moles of KOH</em>
Initial moles of H₂SO₄ and KOH are:
H₂SO₄: 0.750L ₓ (0.470mol / L) = <em>0.3525 moles of H₂SO₄</em>
KOH: 0.700L ₓ (0.240mol / L) = <em>0.168 moles of KOH</em>
The moles of sulfuric acis that react with KOH are:
0.168mol KOH ₓ (1 mole H₂SO₄ / 2 moles KOH) = 0.0840 moles of sulfuric acid.
Thus, moles that remain are:
0.3525moles - 0.0840 moles = <em>0.2685 moles of sulfuric acid remains</em>
As total volume is 0.700L + 0.750L = 1.450L, concentration is:
0.2685mol / 1.450L = <em>0.185M sulfuric acid</em>
Answer: The Answer is C.
Explanation: The Nucleus only makes up less than .01% of the volume of the Atom. The Nucleus does contain more than 99.9% of the mass of the Atom. I hope that this helps you! Good luck!