Answer:
Circle
Explanation:
When a charged particle is in motion in a region with magnetic field, the particle experiences a force whose magnitude is given by

where
q is the charge
v is the velocity of the particle
B is the strength of the magnetic field
is the angle between the directions of v and B
In this problem, the velocity of the particle is perpendicular to the magnetic field, so

and the formula reduces to

Also, the direction of this force is perpendicular to the direction of motion of the particle. This means that as the charge moves in the region of the magnetic field, the force acting on it acts as a centripetal force: therefore, the particle will start moving by unifom circular motion, with constant speed (because the magnetic force does no work on the particle, since it is perpendicular to the direction of motion).
So, the path of the particle will be a circle.
Answer:
It's energy will double.
Explanation:
This is because energy, E, is related to frequency, f, by:
E = hf
Where h = Planck's constant
So, double frequency will be 2f
=> E(2f) = 2hf = 2E.
Hence, energy is doubled.
Answer:C The final velocity is half of trained car B's initial velocity.
Explanation:
Looks like a double covalent bond.
Answer:
Heat transfer during the process = 0
Work done during the process = - 371.87 KJ
Explanation:
Initial pressure
= 0.02 bar
Initial temperature
= 200 K
Final pressure
= 0.14 bar
Gas constant for helium R = 2.077 
This is an isentropic polytropic process so temperature - pressure relationship is given by the following formula,
= ![[\frac{P_{2} }{P_{1} } ]^{\frac{\gamma - 1}{\gamma} }](https://tex.z-dn.net/?f=%5B%5Cfrac%7BP_%7B2%7D%20%7D%7BP_%7B1%7D%20%7D%20%5D%5E%7B%5Cfrac%7B%5Cgamma%20-%201%7D%7B%5Cgamma%7D%20%7D)
Put all the values in above formula we get,
⇒
= ![[\frac{0.14 }{0.02 } ]^{\frac{1.4 - 1}{1.4} }](https://tex.z-dn.net/?f=%5B%5Cfrac%7B0.14%20%7D%7B0.02%20%7D%20%5D%5E%7B%5Cfrac%7B1.4%20-%201%7D%7B1.4%7D%20%7D)
⇒
= 1.74
⇒
= 348.72 K
This is the final temperature of helium.
For isentropic polytropic process heat transfer to the system is zero.
⇒ ΔQ = 0
Work done W = m × (
-
) × 
⇒ W = 1 × ( 200 - 348.72 ) × 
⇒ W = 371.87 KJ
This is the work done in this process. here negative sign shows that work is done on the gas in the compression of gas.