Best Answer: 15 (number of geese) : 27 (total # of birds)<span>
</span>
Answer:
60
Step-by-step explanation:
In this case, all of the sides are equal. All sides should add up to 180 degrees.
x+x+x=180
180/3= 60
Answers:
- y intercept: 9
- zeros: -3, -1, 1, 3
===============================================
Explanation:
The y intercept is where the curve crosses the y axis. The curve appears to do so just below y = 10, so y = 9 seems like a good estimate. I'm basing this off of the answer choices given. The y intercept always occurs when x = 0.
The zeros, aka roots or x intercepts, are where the curve crosses or touches the x axis. This occurs in four locations: x = -3, x = -1, x = 1 and x = 3. The x intercepts always occur when y = 0.
The answer is: z² .
__________________________
Given: <span>(x÷(y÷z))÷((x÷y)÷z) ; without any specified values for the variables;
_______________________
we shall simplify.
___________________
We have:
__________
</span>(x÷(y÷z)) / ((x÷y)÷z) .
_____________________________________
Start with the first term; or, "numerator": (x÷(y÷z)) ;
_____________________________________
x ÷ (y / z) = (x / 1) * (z / y) = (x * z) / (1 *y) = [(xz) / y ]
_____________________________________
Then, take the second term; or "denominator":
_____________________________________
((x ÷ y) ÷z ) = (x / y) / z = (x / y) * (1 / z) = (x *1) / (y *z) = [x / (zy)]
_________________________________________
So (x÷(y÷z)) / ((x÷y)÷z) = (x÷(y÷z)) ÷ ((x÷y)÷z) =
[(xz) / y ] ÷ [x / (zy)] = [(xz) / y ] / [x / (zy)] =
[(xz) / y ] * [(zy) / x] ;
_______________________________________
The 2 (two) z's "cancel out" to "1" ; and
The 2 (two) y's = "cancel out" to "1" ;
______________________________________________
And we are left with: z * z = z² . The answer is: z² .
______________________________________________
Answer:
41/45
Step by Step Explanation:
Add: 8/
10
+ 1/
9
= 8 · 9/
10 · 9
+ 1 · 10/
9 · 10
= 72/
90
+ 10/
90
= 72 + 10/
90
= 82/
90
= 2 · 41/
2 · 45
= 41/
45
For adding, subtracting, and comparing fractions, it is suitable to adjust both fractions to a common (equal, identical) denominator. The common denominator you can calculate as the least common multiple of both denominators - LCM(10, 9) = 90. In practice, it is enough to find the common denominator (not necessarily the lowest) by multiplying the denominators: 10 × 9 = 90. In the following intermediate step, cancel by a common factor of 2 gives 41/
45
.
In other words - eight tenths plus one ninth = forty-one forty-fifths.