1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svlad2 [7]
4 years ago
9

Multiply k+3/4k-2 times (12k^2-3)

Mathematics
2 answers:
RSB [31]4 years ago
7 0
<span>
Simplify

<span> <span><span>k+3</span><span>4k−2</span></span>⋅(12<span>k2</span>−3) </span>Step-By-Step Solution:Factor 2 out of <span><span>4k</span><span>−2</span></span>.<span><span><span>k+3</span><span>2<span>(<span><span>2k</span><span>−1</span></span>)</span></span></span>⋅<span>(<span><span>12<span>k2</span></span><span>−3</span></span>)</span></span>Multiply <span><span>k+3</span><span>2<span>(<span><span>2k</span><span>−1</span></span>)</span></span></span> by <span><span>12<span>k2</span></span><span>−3</span></span> to get <span><span><span>k+3</span><span>2<span>(<span><span>2k</span><span>−1</span></span>)</span></span></span><span>(<span><span>12<span>k2</span></span><span>−3</span></span>)</span></span>.<span><span><span>k+3</span><span>2<span>(<span><span>2k</span><span>−1</span></span>)</span></span></span><span>(<span><span>12<span>k2</span></span><span>−3</span></span>)</span></span>Apply the distributive property.<span><span><span><span>k+3</span><span>2<span>(<span><span>2k</span><span>−1</span></span>)</span></span></span><span>(<span>12<span>k2</span></span>)</span></span>+<span><span><span>k+3</span><span>2<span>(<span><span>2k</span><span>−1</span></span>)</span></span></span>⋅<span>−3</span></span></span>Cancel the common factor of 2.More Steps<span><span><span><span>k+3</span><span><span>2k</span><span>−1</span></span></span><span><span>6<span>k2</span></span>1</span></span>+<span><span><span>k+3</span><span>2<span>(<span><span>2k</span><span>−1</span></span>)</span></span></span>⋅<span>−3</span></span></span>Simplify.Less StepsMultiply <span><span>k+3</span><span><span>2k</span><span>−1</span></span></span> and <span><span>6<span>k2</span></span>1</span> to get <span><span><span>(<span>k+3</span>)</span><span>(<span>6<span>k2</span></span>)</span></span><span><span>2k</span><span>−1</span></span></span>.<span><span><span><span>(<span>k+3</span>)</span><span>(<span>6<span>k2</span></span>)</span></span><span><span>2k</span><span>−1</span></span></span>+<span><span><span>k+3</span><span>2<span>(<span><span>2k</span><span>−1</span></span>)</span></span></span>⋅<span>−3</span></span></span>Remove parentheses around <span>6<span>k2</span></span>.<span><span><span><span><span>(<span>k+3</span>)</span>⋅6</span><span>k2</span></span><span><span>2k</span><span>−1</span></span></span>+<span><span><span>k+3</span><span>2<span>(<span><span>2k</span><span>−1</span></span>)</span></span></span>⋅<span>−3</span></span></span>Simplify <span><span><span>k+3</span><span>2<span>(<span><span>2k</span><span>−1</span></span>)</span></span></span>⋅<span>−3</span></span>.More Steps<span><span><span><span><span>(<span>k+3</span>)</span>⋅6</span><span>k2</span></span><span><span>2k</span><span>−1</span></span></span>+<span><span><span>(<span>k+3</span>)</span>⋅<span>−3</span></span><span>2<span>(<span><span>2k</span><span>−1</span></span>)</span></span></span></span>Simplify each term.More Steps<span><span><span><span>6<span>(<span>k+3</span>)</span></span><span>k2</span></span><span><span>2k</span><span>−1</span></span></span><span>−<span><span>3<span>(<span>k+3</span>)</span></span><span>2<span>(<span><span>2k</span><span>−1</span></span>)</span></span></span></span></span>To write <span><span><span>6<span>(<span>k+3</span>)</span></span><span>k2</span></span><span><span>2k</span><span>−1</span></span></span> as a fraction with a common denominator, multiply by <span>22</span>.<span><span><span><span><span>6<span>(<span>k+3</span>)</span></span><span>k2</span></span><span><span>2k</span><span>−1</span></span></span><span>22</span></span><span>−<span><span>3<span>(<span>k+3</span>)</span></span><span>2<span>(<span><span>2k</span><span>−1</span></span>)</span></span></span></span></span>Write each expression with a common denominator of <span><span>(<span><span>2k</span><span>−1</span></span>)</span>⋅2</span>, by multiplying each by an appropriate factor of 1.More Steps<span><span><span><span><span>6<span>(<span>k+3</span>)</span></span><span>k2</span></span>⋅2</span><span>2<span>(<span><span>2k</span><span>−1</span></span>)</span></span></span><span>−<span><span>3<span>(<span>k+3</span>)</span></span><span>2<span>(<span><span>2k</span><span>−1</span></span>)</span></span></span></span></span>Combine the numerators over the common denominator.<span><span><span><span><span>6<span>(<span>k+3</span>)</span></span><span>k2</span></span>⋅2</span><span>−<span>(<span>3<span>(<span>k+3</span>)</span></span>)</span></span></span><span>2<span>(<span><span>2k</span><span>−1</span></span>)</span></span></span></span>Multiply <span><span>k+3</span><span><span>2k</span><span>−1</span></span></span> and <span><span>6<span>k2</span></span>1</span> to get <span><span><span>(<span>k+3</span>)</span><span>(<span>6<span>k2</span></span>)</span></span><span><span>2k</span><span>−1</span></span></span>.<span><span><span><span>(<span>k+3</span>)</span><span>(<span>6<span>k2</span></span>)</span></span><span><span>2k</span><span>−1</span></span></span>+<span><span><span>k+3</span><span>2<span>(<span><span>2k</span><span>−1</span></span>)</span></span></span>⋅<span>−3</span></span></span><span><span><span><span>k+3</span><span><span>2k</span><span>−1</span></span></span><span><span>6<span>k2</span></span>1</span></span>+<span><span>k+3</span><span>2<span>(<span><span>2k</span><span>−1</span></span>)</span></span><span>Factor 2 out of 4k−2.</span></span></span><span><span><span>k+3/</span><span>2<span>(<span><span>2k</span><span>−1</span></span>)</span></span></span>⋅<span>(<span><span>12<span>k2</span></span><span>−3</span></span>)</span></span>Multiply <span><span>k+3/</span><span>2<span>(<span><span>2k</span><span>−1</span></span>)</span></span></span> by <span><span>12<span>k2</span></span><span>−3</span></span> to get <span><span><span>k+3/</span><span>2<span>(<span><span>2k</span><span>−1</span></span>)</span></span></span><span>(<span><span>12<span>k2</span></span><span>−3</span></span>)</span></span>.<span><span><span>k+3/</span><span>2<span>(<span><span>2k</span><span>−1</span></span>)</span></span></span><span>(<span><span>12<span>k2</span></span><span>−3</span></span>)</span></span>Apply the distributive property.<span><span><span><span>k+3/</span><span>2<span>(<span><span>2k</span><span>−1</span></span>)</span></span></span><span>(<span>12<span>k2</span></span>)</span></span>+<span><span><span>k+3/</span><span>2<span>(<span><span>2k</span><span>−1</span></span>)</span></span></span>⋅<span>−3
</span></span></span>
<span><span><span><span>k+3/</span><span><span>2k</span><span>−1</span></span></span><span><span>6<span>k2</span></span>1</span></span>+<span><span><span>k+3/</span><span>2<span>(<span><span>2k</span><span>−1</span></span>)</span></span></span>⋅<span>−3
</span></span></span>Remove parentheses around <span>6<span>k2</span></span>.<span><span><span><span><span>(<span>k+3</span>)</span>⋅6</span><span>k2/</span></span><span><span>2k</span><span>−1</span></span></span>+<span><span><span>k+3/</span><span>2<span>(<span><span>2k</span><span>−1</span></span>)</span></span></span>⋅<span>−3</span></span></span>Simplify <span><span><span>k+3</span><span>2<span>(<span><span>2k</span><span>−1</span></span>)</span></span></span>⋅<span>−3</span></span>.
<span><span><span><span>6<span>(<span>k+3</span>)</span></span><span>k2</span></span><span><span>2k</span><span>−1</span></span></span><span>−<span><span>3<span>(<span>k+3</span>)</span></span><span>2<span>(<span><span>2k</span><span>−1</span></span>)</span></span></span></span></span>To write <span><span><span>6<span>(<span>k+3</span>)</span></span><span>k2/</span></span><span><span>2k</span><span>−1</span></span></span> as a fraction with a common denominator, multiply by <span>2/2</span>.<span><span><span><span><span>6<span>(<span>k+3</span>)</span></span><span>k2</span></span><span><span>2k</span><span>−1</span></span></span><span>22</span></span><span>−<span><span>3<span>(<span>k+3</span>)</span></span><span>2<span>(<span><span>2k</span><span>−1</span></span>)

</span></span></span></span></span><span><span>k+3/4k-2*(12k^2-3)<span /></span>Popular Problems > Algebra > SimplifyProblem:Simplify

<span> <span><span>k+3</span><span>4k−2</span></span>⋅(12<span>k2</span>−3) </span>Step-By-Step Solution:Factor 2 out of <span><span>4k</span><span>−2</span></span>.<span><span><span>k+3</span><span>2<span>(<span><span>2k</span><span>−1</span></span>)</span></span></span>⋅<span>(<span><span>12<span>k2</span></span><span>−3</span></span>)</span></span>Multiply <span><span>k+3</span><span>2<span>(<span><span>2k</span><span>−1</span></span>)</span></span></span> by <span><span>12<span>k2</span></span><span>−3</span></span> to get <span><span><span>k+3</span><span>2<span>(<span><span>2k</span><span>−1</span></span>)</span></span></span><span>(<span><span>12<span>k2</span></span><span>−3</span></span>)</span></span>.<span><span><span>k+3</span><span>2<span>(<span><span>2k</span><span>−1</span></span>)</span></span></span><span>(<span><span>12<span>k2</span></span><span>−3</span></span>)</span></span>Apply the distributive property.<span><span><span><span>k+3</span><span>2<span>(<span><span>2k</span><span>−1</span></span>)</span></span></span><span>(<span>12<span>k2</span></span>)</span></span>+<span><span><span>k+3</span><span>2<span>(<span><span>2k</span><span>−1</span></span>)</span></span></span>⋅<span>−3</span></span></span>Cancel the common factor of 2.More Steps<span><span><span><span>k+3</span><span><span>2k</span><span>−1</span></span></span><span><span>6<span>k2</span></span>1</span></span>+<span><span><span>k+3</span><span>2<span>(<span><span>2k</span><span>−1</span></span>)</span></span></span>⋅<span>−3</span></span></span>Simplify.Less StepsMultiply <span><span>k+3</span><span><span>2k</span><span>−1</span></span></span> and <span><span>6<span>k2</span></span>1</span> to get <span><span><span>(<span>k+3</span>)</span><span>(<span>6<span>k2</span></span>)</span></span><span><span>2k</span><span>−1</span></span></span>.<span><span><span><span>(<span>k+3</span>)</span><span>(<span>6<span>k2</span></span>)</span></span><span><span>2k</span><span>−1</span></span></span>+<span><span><span>k+3</span><span>2<span>(<span><span>2k</span><span>−1</span></span>)</span></span></span>⋅<span>−3</span></span></span>Remove parentheses around <span>6<span>k2</span></span>.<span><span><span><span><span>(<span>k+3</span>)</span>⋅6</span><span>k2</span></span><span><span>2k</span><span>−1</span></span></span>+<span><span><span>k+3</span><span>2<span>(<span><span>2k</span><span>−1</span></span>)</span></span></span>⋅<span>−3</span></span></span>Simplify <span><span><span>k+3</span><span>2<span>(<span><span>2k</span><span>−1</span></span>)</span></span></span>⋅<span>−3</span></span>.More Steps<span><span><span><span><span>(<span>k+3</span>)</span>⋅6</span><span>k2</span></span><span><span>2k</span><span>−1</span></span></span>+<span><span><span>(<span>k+3</span>)</span>⋅<span>−3</span></span><span>2<span>(<span><span>2k</span><span>−1</span></span>)</span></span></span></span>Simplify each term.More Steps<span><span><span><span>6<span>(<span>k+3</span>)</span></span><span>k2</span></span><span><span>2k</span><span>−1</span></span></span><span>−<span><span>3<span>(<span>k+3</span>)</span></span><span>2<span>(<span><span>2k</span><span>−1</span></span>)</span></span></span></span></span>To write <span><span><span>6<span>(<span>k+3</span>)</span></span><span>k2</span></span><span><span>2k</span><span>−1</span></span></span> as a fraction with a common denominator, multiply by <span>22</span>.<span><span><span><span><span>6<span>(<span>k+3</span>)</span></span><span>k2</span></span><span><span>2k</span><span>−1</span></span></span><span>22</span></span><span>−<span><span>3<span>(<span>k+3</span>)</span></span><span>2<span>(<span><span>2k</span><span>−1</span></span>)</span></span></span></span></span>Write each expression with a common denominator of <span><span>(<span><span>2k</span><span>−1</span></span>)</span>⋅2</span>, by multiplying each by an appropriate factor of 1.More Steps<span><span><span><span><span>6<span>(<span>k+3</span>)</span></span><span>k2</span></span>⋅2/</span><span>2<span>(<span><span>2k</span><span>−1</span></span>)</span></span></span><span>−<span><span>3<span>(<span>k+3</span>)</span></span><span>2<span>(<span><span>2k</span><span>−1</span></span>)</span></span></span></span></span>Combine the numerators over the common denominator.<span><span><span><span><span>6<span>(<span>k+3</span>)</span></span><span>k2</span></span>⋅2</span><span>−<span>(<span>3<span>(<span>k+3</span>)</span></span>)/</span></span></span><span>2<span>(<span><span>2k</span><span>−1</span></span>)
</span></span></span><span><span><span>3<span>(<span>k+3</span>)</span></span><span>(<span><span>2k</span>+1</span>)/</span></span>2</span></span>
Nataly [62]4 years ago
4 0
\dfrac{k+3}{4k-2}\cdot(12k^2-3)=\dfrac{k(12k^2)+k(-3)+3(12k^2)+3(-3)}{4k-2}\\\\=\dfrac{12k^3-3k+36k^2-9}{4k-2}=\dfrac{12k^3+36k^2-3k-9}{4k-2}
You might be interested in
Help pls also show work if needed!!
kifflom [539]

Answer:

2a. No False

2b. Yes True

2c. Yes True

2d. No False

Step-by-step explanation:

4 0
3 years ago
The rate at which an assembly line workers efficiency E (expressed as a percent) changes with respect to time t is given by E'(t
zavuch27 [327]

By the fundamental theorem of calculus,

E(t)=E(1)+\displaystyle\int_1^t E'(u)\,\mathrm du

So we have

E(t)=92+\displaystyle\int_1^t(75-6u)\,\mathrm du

E(t)=92+(75u-3u^2)\bigg|_1^t

E(t)=20 + 75 t - 3 t^2

4 0
3 years ago
To solve the inequality m/-7&lt;(or equal to) 14 , what should be done to both sides?
Marizza181 [45]

Answer:

\large\boxed{m\geq-98}

Step-by-step explanation:

\dfrac{m}{-7}\leq14\\\\-\dfrac{m}{7}\leq14\qquad\text{change the signs}\\\\\dfrac{m}{7}\geq-14\qquad\text{multiply both sides by 7}\\\\7\!\!\!\!\diagup^1\cdot\dfrac{m}{7\!\!\!\!\diagup_1}\geq(7)(-14)\\\\m\geq-98

5 0
4 years ago
Read 2 more answers
What is the greatest common factor of x^5, x^6, x^8?
lozanna [386]

Answer: I think the answer is x5

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Pat needs to determine the height of a tree before cutting it down to be sure that it will not fall on a nearby fence. The angle
dem82 [27]

Answer:

229.23 feet.

Step-by-step explanation:

The pictorial representation of the problem is attached herewith.

Our goal is to determine the height, h of the tree in the right triangle given.

In Triangle BOH

Tan 60^0=\dfrac{h}{x}\\h=xTan 60^0

Similarly, In Triangle BOL

Tan 50^0=\dfrac{h}{x+60}\\h=(x+60)Tan 50^0

Equating the Value of h

xTan 60^0=(x+60)Tan 50^0\\xTan 60^0=xTan 50^0+60Tan 50^0\\xTan 60^0-xTan 50^0=60Tan 50^0\\x(Tan 60^0-Tan 50^0)=60Tan 50^0\\x=\dfrac{60Tan 50^0}{Tan 60^0-Tan 50^0} ft

Since we have found the value of x, we can now determine the height, h of the tree.

h=\left(\dfrac{60Tan 50^0}{Tan 60^0-Tan 50^0}\right)\cdotTan 60^0\\h=229.23 feet

The height of the tree is 229.23 feet.

5 0
3 years ago
Other questions:
  • Balancing the equation 121 - X = 49+10+26
    8·1 answer
  • Which point satisfies both ƒ(x) = 2x and g(x) = 3x?<br><br> (0,1)<br> (0,-1)<br> (1,0)<br> (-1, 0)
    5·1 answer
  • Two cars started from the same point. one traveled north at 45 mi/h and the other traveled south at 65 mi/h. how far apart were
    5·1 answer
  • Which ordered pair would be a solution to the equation y = 2x -9?
    15·2 answers
  • Write an equation for the line described in standard form with through (-4, 3), with y-intercept 0
    9·2 answers
  • The enrollment at a high school for the year 2007 is approximately 1500. The growth of the school population can be represented
    13·2 answers
  • Express the ratio $36 in 4 days as a ratio in its simplest form
    7·1 answer
  • Write the equation in slope-intercept form in each line based on the information give
    11·1 answer
  • Find the minimum value of C = 6x + 7y Subject to the following constraints: x ≥ 0 y ≥ 0 4x + 3y = 24 x + 3y &gt; 15​
    7·1 answer
  • Answer please and explain
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!