Answer:
It is the way you see someone or something
A voltmeter<span> its </span>instrument<span> used for </span>measuring<span> electrical potential difference between two points in an electric circuit. </span>An ammeter<span> is a </span>measuring device<span> used to</span>measure<span> the electric current in a circuit.
</span>
I’m not sure what you are asking
Answer:

Explanation:
The electric field is defined as the electric force per unit of charge, this is:
.
The electric force can be obtained through Coulomb's law, which states that the electric force between to electrically charged particles is inversely proportional to the square of the distance between them and directly proportional to the product of their charges. The electric force can be expressed as
.
By substitution we get that

Now, letting
be the electric field at point A, letting
be the electric field at point B, and letting R be the distance from the charge to A:
.
The ration of the electric fields is

This means that at half the distance, the electric field is four times stronger.
Answer:
Approximately
.
Assumption: air resistance on the rocket is negligible. Take
.
Explanation:
By Newton's Second Law of Motion, the acceleration of the rocket is proportional to the net force on it.
.
Note that in this case, the uppercase letter
in the units stands for "mega-", which is the same as
times the unit that follows. For example,
, while
.
Convert the mass of the rocket and the thrust of its engines to SI standard units:
- The standard unit for mass is kilograms:
. - The standard for forces (including thrust) is Newtons:
.
At launch, the velocity of the rocket would be pretty low. Hence, compared to thrust and weight, the air resistance on the rocket would be pretty negligible. The two main forces that contribute to the net force of the rocket would be:
- Thrust (which is supposed to go upwards), and
- Weight (downwards due to gravity.)
The thrust on the rocket is already known to be
. Since the rocket is quite close to the ground, the gravitational acceleration on it should be approximately
. Hence, the weight on the rocket would be approximately
.
The magnitude of the net force on the rocket would be
.
Apply the formula
to find the net force on the rocket. To make sure that the output (acceleration) is in SI units (meters-per-second,) make sure that the inputs (net force and mass) are also in SI units (Newtons for net force and kilograms for mass.)
.