The value of 'g' is not affected by rotation at any place on Earth.
This question is incomplete, the complete question is;
Scientists studying an anomalous magnetic field find that it is inducing a circular electric field in a plane perpendicular to the magnetic field. The electric field strength 1.5 m from the center of the circle is 7 mV/m.
At what rate is the magnetic field changing?
Answer:
the magnetic field changing at the rate of 9.33 m T/s
Explanation:
Given the data in the question;
Electric field E = 7 mV/m
radius r = 1.5 m
Now, from Faraday law of induction;
∫E.dl = d∅/dt
E∫dl = A( dB/dt )
E( 2πr ) = πr² ( dB/dt )
( 0.007 ) = (r/2) ( dB/dt )
( 0.007 ) = 0.75 ( dB/dt )
dB/dt = 0.007 / 0.75
dB/dt = 0.00933 T/s
dB/dt = ( 0.00933 × 1000) m T/s
dB/dt = 9.33 m T/s
Therefore, the magnetic field changing at the rate of 9.33 m T/s
Answer: Pressure increases as the depth increases.
Answer:
Explanation:
Let the charge on bead A be q nC and the charge on bead B be 28nC - qnC
Force F between them
4.8\times10^{-4} = 
=120 x 10⁻⁸ = 9 x q(28 - q ) x 10⁻⁹
133.33 = 28q - q²
q²- 28q +133.33 = 0
It is a quadratic equation , which has two solution
q_A = 21.91 x 10⁻⁹C or q_B = 6.09 x 10⁻⁹ C