Answer:
1.3m/s
Explanation:
Data given,
Mass,m=1.0kg,
Amplitude,A=0.10m,
Frequency,f=2.0Hz.
From the equation of a simple harmonic motion, the displacement of the object at a given time is define as

we can express the velocity by the derivative of the displacement,
Hence

at equilibrium, the velocity becomes

Hence if we substitute values we arrive at

Answer: B to C
Explanation: The line is curving inwards, practically calculating the stance that it had went down. If it went straight across, it stayed the same till a specific point, furthermore calculating the bent line bending upwards is actually a partial-raise, conclude points B to C is most likely an un-even balance, meaning it had went down; or decreasing. B to C is the decreasing segment of this equation/problem (question).
Answer:
Explanation:
Given
mass of rock 
Elevation of Rock 
Distance traveled by rock with time

where, u=initial velocity
t=time
a=acceleration
here initial velocity is zero
when rock is 5 m from ground then it has traveled a distance of 5 m from top because total height is 10 m



velocity at this time



Those two units can be compared to a 'mile per hour' and a 'mile per hour - hour'.
One is a rate. The other is a quantity, after maintaining a rate for some time.
-- 'Joule' is a unit of energy. It's the amount of work (energy) you do
when you push with a force of 1 newton though a distance of 1 meter.
Lifting 10 pound of beans 3 feet off the floor takes about 40.7 joules of energy.
-- 'Watt' is a <u><em>rate</em></u> of using energy . . . 1 joule per second.
If you lift 10 pounds 3 feet off the floor in 1 second, your <em>power</em> is 40.7 watts.
-- 'Watt-second' is the amount of energy used in one second,
at the rate of 1 joule per second . . . 1 joule.
-- 'Watt-hour' is the amount of energy used in one hour,
at the rate of 1 joule per second . . . 3,600 joules.
-- 'Kilowatt' is a bigger <em>rate</em> of using energy . . . 1,000 joules per second.
-- 'Kilowatt - second' is the amount of energy used in one second,
at the rate of 1,000 joules per second . . . 1,000 joules .
-- 'Kilowatt - hour' is the amount of energy used in one hour,
at the rate of 1,000 joules per second . . . 3,600,000 joules .
Depending on where you live, 3,600,000 joules of energy bought
from the electric company costs something between 5¢ and 25¢.