Calculate the length of a spaceship as follows:
l = l₀√1 - v²/c²
=(400 m)√1 - (0.75c)2 c²
=264.575m.
The Spaceship Origin Portfolio is an index fund that invests in listed Australian and global equities by market capitalization. Invest in the top 100 Australian and top 100 international companies.
Starships, also known as star cruisers, starships, spacecraft, or simply starships or ships, were vessels designed specifically for interstellar travel between star systems.
For clients in the Spaceship Index portfolio, the situation is a little different. The Spaceship Index portfolio consists of approximately 100 of his ASX-listed companies with the largest market capitalization and approximately 100 global companies with the largest market capitalization.
Learn more about spaceship at
brainly.com/question/28175986
#SPJ4
At 100 km/hr, the car's kinetic energy is
KE = (1/2) (mass) (speed)²
KE = (1/2) (1575 kg) ( [100 km/hr] x [1000 m/km] x [1 hr/3600 sec] )²
KE = (787.5 kg) (27.78 m/s)²
KE = 607,639 Joules
In order to deliver this energy in 2.9 seconds, the engine must supply
(607,639 J / 2.9 sec) = 209,531 watts
<em>Power = 281 HP</em>
Answer:
Explanation:
All the rest of the information is extraneous. The only 2 things you have to know are
d = 20 km
t = 8 minutes = 8/60 hours = 0.13333333
So the speed is s = d/t
s = 20/0.1333333 = 150 km/hour
Note: you have not specified what units the speed is. I suppose you could answer 20/8 = 2.5 km/min
Answer:
i. The error is the rough convex mirror.
ii. This should be replaced with a smooth convex morror.
Explanation:
Reflection is dependent on the surface involved and has two types; diffuse and specular. When the surface is rough, diffused reflection is observed. The surface causes a distortion of the incident light (the rays would be reflected at different angles to one another) after reflection. This makes some rays to interfere with one another. While specular reflection is observed with a smooth surface.
In the statement, the rough convex mirror would produce a distorted reflection which would produce diffused reflection. The effect is that few or no rays (depending on the degree of how rough the surfce is) would be reflected to the other smooth, flat diagonal mirror.