Answer:
A thin, taut string tied at both ends and oscillating in its third harmonic has its shape described by the equation y(x,t)=(5.60cm)sin[(0.0340rad/cm)x]sin[(50.0rad/s)t]y(x,t)=(5.60cm)sin[(0.0340rad/cm)x]sin[(50.0rad/s)t], where the origin is at the left end of the string, the x-axis is along the string, and the y-axis is perpendicular to the string. (a) Draw a sketch that shows the standing-wave pattern. (b) Find the amplitude of the two traveling waves that make up this standing wave. (c) What is the length of the string? (d) Find the wavelength, frequency, period, and speed of the traveling waves. (e) Find the maximum transverse speed of a point on the string. (f) What would be the equation y(x, t) for this string if it were vibrating in its eighth harmonic?
Answer:
4.1 m
Explanation:
10 kW = 10000 W
20mi/h = 20*1.6 km/mi = 32 km/h = 32 * 1000 (m/km) *(1/3600) hr/s = 8.89 m/s
The power yielded by the wind turbine can be calculated using the following formula

where
is the air density, v = 8.89 m/s is the wind speed, A is the swept area and
is the efficiency



The swept area is a circle with radius r being the blade length



Explanation:
At point B, the velocity speed of the train is as follows.

= 
= 26.34 m/s
Now, we will calculate the first derivative of the equation of train.
y = 

Now, second derivative of the train is calculated as follows.
Radius of curvature of the train is as follows.
![\rho = \frac{[1 + (\frac{dy}{dx})^{2}]^{\frac{3}{2}}}{\frac{d^{2}y}{dx^{2}}}](https://tex.z-dn.net/?f=%5Crho%20%3D%20%5Cfrac%7B%5B1%20%2B%20%28%5Cfrac%7Bdy%7D%7Bdx%7D%29%5E%7B2%7D%5D%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%7B%5Cfrac%7Bd%5E%7B2%7Dy%7D%7Bdx%5E%7B2%7D%7D%7D)
= ![\frac{[1 + 0.2e^{\frac{400}{1000}}^{2}]^{\frac{3}{2}}}{0.2(10^{-3})e^{\frac{400}{1000}}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5B1%20%2B%200.2e%5E%7B%5Cfrac%7B400%7D%7B1000%7D%7D%5E%7B2%7D%5D%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%7B0.2%2810%5E%7B-3%7D%29e%5E%7B%5Cfrac%7B400%7D%7B1000%7D%7D%7D)
= 3808.96 m
Now, we will calculate the normal component of the train as follows.

= 
= 0.1822 
The magnitude of acceleration of train is calculated as follows.
a = 
= 
= 
Thus, we can conclude that magnitude of the acceleration of the train when it reaches point B, where sAB = 412 m is
.
Answer:
adapted from NOVA, a team of historians, engineers, and trade experts recreate a medieval throwing machine called a trebuchet. To launch a projectile, a trebuchet utilizes the transfer of gravitational potential energy into kinetic energy. A massive counterweight at one end of a lever falls because of gravity, causing the other end of the lever to rise and release a projectile from a sling. As part of their design process, the engineers use models to help evaluate how well their designs will work.
Explanation: