1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
s2008m [1.1K]
3 years ago
13

PLEASEE HELPP

Physics
1 answer:
topjm [15]3 years ago
4 0

Explanation:

u=166m/s, v=0(at it's highest point final velocity is zero), a=9.8m/s², t=8.6s

by the formula, S=ut+½at².

S=[166×8.6+½.×9.8×(8.6)²]. ...by calculation

S = 1427.6+362.404

S=1790.004m

hope this helps you.

You might be interested in
We intend to observe two distant equal brightness stars whose angular separation is 50.0 × 10-7 rad. Assuming a mean wavelength
san4es73 [151]

Answer:

13.4cm

Explanation:

According to Rayleigh’s criterion the angular resolution to distinguish two objects is given by:

\theta=1.22\frac{\lambda}{b}

θ = 50.0*10^-7 rad

λ: wavelength of the light = 550nm

b = diameter of the objective

By doing b the subject of the formula and replacing the values of the angle and wavelength you obtain:

b=1.22\frac{\lambda}{\theta}=1.22\frac{550*10^{-9}m}{50.0*10^{-7}rad}=0.134m=13.4cm

hence, the smallest diameter objective lens is 13.4cm

8 0
3 years ago
Read 2 more answers
What are 3 artificial and 2 natural sources of electromagnetic radiation?
KatRina [158]

Answer: its b bro

Explanation:

ajafa'jfbA'FJ

8 0
2 years ago
Bill throws a tennis ball to his dog. He throws the ball at a speed of 15 m/s at an angle of 30° to the horizontal. Assume he th
Sidana [21]

1a) Bill and the dog must have a speed of 13.0 m/s

1b) The speed of the dog must be 22.5 m/s

2a) The ball passes over the outfielder's head at 3.33 s

2b) The ball passes 1.2 m above the glove

2c) The player can jump after 2.10 s or 3.13 s after the ball has been hit

2d) One solution is when the player is jumping up, the other solution is when the player is falling down

Explanation:

1a)

The motion of the ball in this problem is a projectile motion, so it follows a parabolic path which consists of two independent motions:

- A uniform motion (constant velocity) along the horizontal direction

- An accelerated motion with constant acceleration (acceleration of gravity) in the vertical direction

In part a), we want to know at what speed Bill and the dog have to run in order to intercept the ball as it lands on the ground: this means that Bill and the dog must have the same velocity as the horizontal velocity of the ball.

The ball's initial speed is

u = 15 m/s

And the angle of projection is

\theta=30^{\circ}

So, the ball's horizontal velocity is

v_x = u cos \theta = (15)(cos 30)=13.0 m/s

And therefore, Bill and the dog must have this speed.

1b)

For this part, we have to consider the vertical motion of the ball first.

The vertical position of the ball at time t is given by

y=u_yt+\frac{1}{2}at^2

where

u_y = u sin \theta = (15)(sin 30) = 7.5 m/s is the initial vertical velocity

a=g=-9.8 m/s^2 is the acceleration of gravity

The ball is at a position of y = 2 m above the ground when:

2=7.5t + \frac{1}{2}(-9.8)t^2\\4.9t^2-7.5t+2=0

Which has two solutions: t=0.34 s and t=1.19 s. We are told that the ball is falling to the ground, so we have to consider the second solution, t = 1.19 s.

The horizontal distance covered by the ball during this time is

d=v_x t =(13.0)(1.19)=15.5 m

The dog must be there 0.5 s before, so at a time

t' = t - 0.5 = 0.69 s

So, the speed of the dog must be

v_x' = \frac{d}{t'}=\frac{15.5}{0.69}=22.5 m/s

2a)

Here we just need to consider the horizontal motion of the ball.

The horizontal distance covered is

d=98 m

while the horizontal velocity of the ball is

v_x = u cos \theta = (34)(cos 30)=29.4 m/s

where u = 34 m/s is the initial speed.

So, the time taken for the ball to cover this distance is

t=\frac{d}{v_x}=\frac{98}{29.4}=3.33 s

2b)

Here we need to calculate the vertical position of the ball at t = 3.33 s.

The vertical position is given by

y= h + u_y t + \frac{1}{2}at^2

where

h = 1.2 m is the initial height

u_y = u sin \theta = (34)(sin 30)=17.0 m/s is the initial vertical velocity

a=g=-9.8 m/s^2 is the acceleration of gravity

Substituting t = 3.33 s,

y=1.2+(17)(3.33)+\frac{1}{2}(-9.8)(3.33)^2=3.5 m

And sinc the glove is at a height of y' = 2.3 m, the difference in height is

y - y' = 3.5 - 2.3 = 1.2 m

2c)

In order to intercept the ball, he jumps upward at a vertical speed of

u_y' = 7 m/s

So its position of the glove at time t' is

y'= h' + u_y' t' + \frac{1}{2}at'^2

where h' = 2.3 m is the initial height of the glove, and t' is the time from the moment when he jumps. To catch the ball, the height must be

y' = y = 3.5 m (the height of the ball)

Substituting and solving for t', we find

3.5 = 2.3 + 7t' -4.9t'^2\\4.9t'^2-7t'+12 = 0

Which has two solutions: t' = 0.20 s, t' = 1.23 s. But this is the time t' that the player takes to reach the same height of the ball: so the corresponding time after the ball has been hit is

t'' = t -t'

So we have two solutions:

t'' = 3.33 s - 0.20 s = 3.13 s\\t'' = 3.33 s - 1.23 s = 2.10 s

So, the player can jump after 2.10 s or after 3.13 s.

2d)

The reason for the two solutions is the following: the motion of the player is a free fall motion, so initially he jump upwards, then because of gravity he is accelerated downward, and therefore eventually he reaches a maximum height and then he  falls down.

Therefore, the two solutions corresponds to the two different part of the motion.

The first solution, t'' = 2.10 s, is the time at which the player catches the ball while he is in motion upward.

On the other hand, the second solution t'' = 3.13 s, is the time at which the player catches the ball while falling down.

Learn more about projectile motion:

brainly.com/question/8751410

#LearnwithBrainly

7 0
3 years ago
What's the name of the compound Kl?
Nat2105 [25]

Answer: Potassium iodide

Explanation: their you go

3 0
2 years ago
Read 2 more answers
3 + 2 ∙ 4 = 3 + (2 ∙ 4)
Rzqust [24]

Answer:

11 = 11

Explanation:

6 0
3 years ago
Read 2 more answers
Other questions:
  • What are the three components of the equation for the second law of motion?
    12·1 answer
  • True or false the law of coservation of charge states that charge is neither created nor destroyed but transferred from one obje
    11·1 answer
  • A 30 kg child rides a 20 kg bicycle. Together, the child and the bicycle have a momentum of 110 kg-m/s. What is the velocity of
    7·1 answer
  • Three identical springs each have the same spring constant k. if these three springs are attached end to end forming a spring th
    6·1 answer
  • What is the SI unit for momentum?<br> kg•m<br> kg•m/s<br> kg•m²/s<br> Kg•m/s^2
    5·1 answer
  • PLEASE ANSWER QUICK!! A student pushes a wagon full of bricks with a constant force across the ground. Which of
    9·1 answer
  • In an area in which electricity costs 8 cents/kilowatt-hour, a 5 kW clothes dryer runs for 90 minutes to dry a load of laundry.
    12·2 answers
  • The frequency of sound is 200 Hz. What does it mean? Please help me​
    12·1 answer
  • What is the mass of an object on the moon whose weight sitting on the Earth is 1900 N?
    14·1 answer
  • a trampoline launches a 50kg person 2m into the air. if the springs push with 1960N of force, how much displacement was there in
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!