Answer:
The potential that is as a result of the dipole at <x,0,0> is ![V_x = [\frac{4kqs}{4x^2 -s^2} ]](https://tex.z-dn.net/?f=V_x%20%20%3D%20%5B%5Cfrac%7B4kqs%7D%7B4x%5E2%20-s%5E2%7D%20%5D)
The potential that is as a result the dipole at <0,y,0> is 
Explanation:
From the question we are told that
The dipole moment is 
The potential at the position <x,0,0 > on the x-axis is mathematically represented as

So this can be evaluated as
![V_{x} = [\frac{kq}{x- \frac{s}{2} } ] + [\frac{kq}{x+ \frac{s}{2} } ]](https://tex.z-dn.net/?f=V_%7Bx%7D%20%3D%20%20%5B%5Cfrac%7Bkq%7D%7Bx-%20%5Cfrac%7Bs%7D%7B2%7D%20%7D%20%5D%20%2B%20%5B%5Cfrac%7Bkq%7D%7Bx%2B%20%5Cfrac%7Bs%7D%7B2%7D%20%7D%20%5D)
where s is the distance between the charges
=> ![V_{x} =kq [[\frac{1}{x - \frac{s}{2} } ] - [\frac{1}{x+ \frac{s}{2} } ]]](https://tex.z-dn.net/?f=V_%7Bx%7D%20%3Dkq%20%20%5B%5B%5Cfrac%7B1%7D%7Bx%20-%20%5Cfrac%7Bs%7D%7B2%7D%20%7D%20%5D%20-%20%5B%5Cfrac%7B1%7D%7Bx%2B%20%5Cfrac%7Bs%7D%7B2%7D%20%7D%20%5D%5D)
![V_x = [\frac{4kqs}{4x^2 -s^2} ]](https://tex.z-dn.net/?f=V_x%20%20%3D%20%5B%5Cfrac%7B4kqs%7D%7B4x%5E2%20-s%5E2%7D%20%5D)
The potential at the position <0,y,0 > on the y-axis is mathematically represented as

So this can be evaluated as
![V_y = [\frac{kq}{\sqrt{y^2 + (\frac{s}{2} )^2} } ] - [\frac{kq}{\sqrt{y^2 + (\frac{s}{2} )^2} } ]](https://tex.z-dn.net/?f=V_y%20%20%3D%20%5B%5Cfrac%7Bkq%7D%7B%5Csqrt%7By%5E2%20%2B%20%28%5Cfrac%7Bs%7D%7B2%7D%20%29%5E2%7D%20%7D%20%5D%20-%20%20%5B%5Cfrac%7Bkq%7D%7B%5Csqrt%7By%5E2%20%2B%20%28%5Cfrac%7Bs%7D%7B2%7D%20%29%5E2%7D%20%7D%20%5D)
The negative sign shows that the potential value right side of the minus sign is a negative potential

Note 