1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
romanna [79]
2 years ago
8

Some metals have a molecular structure that makes them good conductors. Explain how understanding this relationship can help eng

ineers make more powerful batteries.​
Physics
1 answer:
erastova [34]2 years ago
7 0

Answer:

Explained below.

Explanation:

Conductors can be defined as materials that permit electricity to flow through them easily.

Now, metals have a molecular structure that makes them good conductors because electrons in the atoms of these conductors tend to move freely from one atom to the other. So a majority of metals make good conductors because these metals tend to hold their electrons loosely. In short, it can help engineers make powerful batteries because then it means that they are capable of giving much more electrical energy since nowadays, advanced batteries make use of ion charges for the batteries.

You might be interested in
Which wave diffracts the most when encountering an obstacle?
viva [34]

Answer;

-A wave with the longest wavelength.

Explanation;

-Diffraction is the apparent of wave through,around small obstacles and the spreading out of wave past small openings. When thinking of diffraction of a wave think of shining a flashlight around a corner. The light bends around the corner but there is a place where it is dark and the light does not hit. Diffraction of a wave is basically the wave bending around an object then dispersing out.

-The amount of diffraction (the sharpness of the bending) increases with increasing wavelength and decreases with decreasing wavelength. When the wavelength of the waves is smaller than the obstacle, no noticeable diffraction occurs.

8 0
3 years ago
A motorcyclist is traveling at 58.3 mph on a flat stretch of highway during a sudden rainstorm. The rain has reduced the coeffic
Novosadov [1.4K]

Explanation:

Below is an attachment containing the solution.

8 0
3 years ago
A golfer hits her tee-shot due north towards the fairway. Her shot has an initial velocity of 60 m/s. A 15 m/s wind is blowing i
vovangra [49]

Answer:

c=71.4m/s

\theta=8.54\textdegree

Explanation:

From the question we are told that

Initial velocity of 60 m/s

Wind speed V_w= 15 m/s \angle  45 \textdegree

Generally Resolving vector mathematically

  sin(45\textdegree)15=10.6\\cos(45\textdegree)15=10.6

Generally the equation Pythagoras theorem is given mathematically by

c^2=a^2+b^2

c^2=10.6^2 +(10.6+60)^2

c=\sqrt{10.6^2 +(10.6+60)^2}

Therefore Resultant velocity (m/s)

c=71.4m/s

b)Resultant direction

Generally the equation for solving Resultant direction

\theta=tan^-1(\frac{y}{x})

Therefore

\theta=tan^-1(\frac{10.6}{70.6})

\theta=8.54\textdegree

7 0
2 years ago
two charges having the same charge magnitude experiencing an attracting force of 3.60N when the charges are 30cm apart.what is t
Tomtit [17]

The charges have opposite sign and magnitude 6 \mu C

Explanation:

The magnitude of the electrostatic force between two electric charges is given by Coulomb's law:

F=k\frac{q_1 q_2}{r^2}

where:

k=8.99\cdot 10^9 Nm^{-2}C^{-2} is the Coulomb's constant

q_1, q_2 are the two charges

r is the separation between the two charges

In this problem, we have:

F = 3.60 N is the force between the two charges

r = 30 cm = 0.30 m is their separation

The two charges have same magnitude, so

q_1 = q_2 = q

So we can rewrite the equation as

F=\frac{kq^2}{r^2}

And solving for q:

q=\sqrt{\frac{Fr^2}{k}}=\sqrt{\frac{(3.60)(0.30)^2}{8.99\cdot 10^9}}=6\cdot 10^{-6} C = 6\mu C

Moreover, the force between the charges is attractive: we know that charges of same sign repel each other while charges of opposite sign attract each other, therefore the charges in this problem have opposite sign, so

q_1 = 6 \mu C\\q_2 = -6 \mu C

Learn more about electric force:

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

3 0
2 years ago
You are coasting on your 12-kg bicycle at 13 m/s and a 5.0-g bug splatters on your helmet. The bug was initially moving at 1.5 m
Brut [27]

Answer:

a) Pi,c = 1066 kgm/s

b) Pi,b = 0.0075 kgm/s  

c) ΔV = - 0.0007 m/s

d) ΔV = - 0.0008 m/s

Explanation:

Given:-

- The mass of the bicycle, mc = 12 kg

- The mass of passenger, mp = 70 kg

- The mass of the bug, mb = 5.0 g

- The initial speed of the bicycle, vpi = 13 m/s

- The initial speed of the bug, vbi = 1.5 m/s

Find:-

a.What is the initial momentum of you plus your bicycle?

b.What is the initial momentum of the bug?

c.What is your change in velocity due to the collision the bug?

d.What would the change in velocity have been if the bug were traveling in the opposite direction?

Solution:-

- First we will set our one dimensional coordinate system, taking right to be positive in the direction of bicycle.

- The initial linear momentum (Pi,c) of the passenger and the bicycle would be:

                       Pi,c = vpi* ( mc + mp)

                       Pi,c = 13* ( 12+ 70 )

                       Pi,c = 1066 kgm/s  

- The initial linear momentum (Pi,b) of the bug would be:

                       Pi,b = vbi*mb

                       Pi,b = 0.005*1.5

                       Pi,b = 0.0075 kgm/s  

- We will consider the bicycle, the passenger and the bug as a system in isolation on which no external unbalanced forces are acting. This validates the use of linear conservation of momentum.

- The bicycle, passenger and bug all travel in the (+x) direction after the bug splatters on the helmet.

                       Pi = Pf

                       Pi,c + Pi,b = V*(mb + mc + mp)

Where,    V : The velocity of the (bicycle, passenger and bug) after collision.

                      1066 + 0.0075 = V*( 0.005 + 12 + 70 )

                      V = 1066.0075 / 82.005

                      V = 12.9993 m/s

- The change in velocity is Δv = 13 - 12.9993 =  - 0.00070 m/s      

- If the bug travels in the opposite direction then the sign of the initial momentum of the bug changes from (+) to (-).

- We will apply the linear conservation of momentum similarly.

                      Pi = Pf

                      Pi,c + Pi,b = V*(mb + mc + mp)        

                      1066 - 0.0075 = V*( 0.005 + 12 + 70 )

                      V = 1065.9925 / 82.005

                      V = 12.99911 m/s

- The change in velocity is Δv = 13 - 12.99911 =  -0.00088 m/s      

7 0
3 years ago
Read 2 more answers
Other questions:
  • A spaceship starting from a resting position accelerates at a constant rate of 9.8 meters per second per second. How long and ho
    8·1 answer
  • Use these images to identify each state of matter. O O CC 0 COM A B C​
    6·1 answer
  • Calculate the power of the eye in D when viewing an object 5.70 m away. (Assume the lens-to-retina distance is 2.00 cm. Enter yo
    6·1 answer
  • Which factors are involved in earthquakes formation (multiple choice)
    15·2 answers
  • The law of reflection applies to ONLY totally reflected waves.<br> Is it true or false
    11·1 answer
  • Desde que altura debes de lanzar una canica de 50g para que adquiera una energia de 100j
    13·1 answer
  • Which geological features are produced when continental plates converge?
    14·1 answer
  • 1. A bicycle initially moving with a velocity
    8·1 answer
  • What is missing from the solubility graph shown on the right?
    10·2 answers
  • Express force in terms of base units​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!