Answer:
Mass = 4152kg
Explanation:
Given
L = 208m
I = 154A
V = 0.245V
Density = 3610 kg/m3
ρ = 4.23 x 10-8Ω·m = resistivity of wire
Resistance R = ρL/ A
R = voltage / current = V/I = 0.245/154 = 1.59×10-³ohms
1.59×10-³ = 4.23 x 10-⁸×208/A
Rearranging,
A = 4.23 x 10-⁸×208/1.59×10-³
A = 5.53×10-³m²
Mass = density × volume
Volume = L×A = 208×5.53×10-³m³= 1.15m³
Mass = 3610×1.15 = 4152kg
Answer:

Explanation:
If the collision is elastic and exactly head-on, then we can use the law of momentum conservation for the motion of the 2 balls
Before the collision

After the collision

So using the law of momentum conservation


We can solve for the speed of ball 1 post collision in terms of others:

Their kinetic energy is also conserved before and after collision


From here we can plug in 






Answer:
you can't go ice skating on it because if it just reached the temp then you need to wait for about 2 hours
Explanation:
Answer:
Option C. 5,000 kg m/s
Explanation:
<u>Linear Momentum on a System of Particles
</u>
Is defined as the sum of the momenta of each particles in a determined moment. The individual momentum is the product of the mass of the particle by its speed
P=mv
The question refers to an 100 kg object traveling at 50 m/s who collides with another object of 50 kg object initially at rest. We compute the moments of each object


The sum of the momenta of both objects prior to the collision is

